物联网(IoT)测试技术网上交流会

。 是德科技(原安捷伦公司)

智能产品测试直播培训周

连续三天 场场精彩 /

5月9日-5月11日 3场直播培训 每天 10:00 - 12:00 直播支持媒体: 21Dianyuan

第1场(

从电池性能分析到精确功耗测试和优化, 提升产品的续航时间

演讲老师: 吕宝华、饶骞

直播时间: 2018年05月09日 10:00-12:00

物联网无线连接技术和射频测试

寅讲老师:汪世龙、胡莹

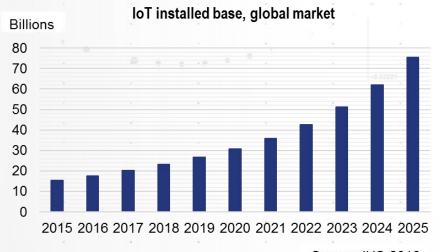
直播时间: 2018年05月10日 10:00-12:00

无线充电的测试

演讲老师:汪世龙、刘娜

直播时间: 2018年05月11日 10:00-12:0

第3场 🌘



你我身边正在普及的智能和物联网设备

物联网(IoT)市场趋势及前景

Source: IHS 2016

IoT 设备年增长率16.7%, 预计 2017年达到\$800B -/DC

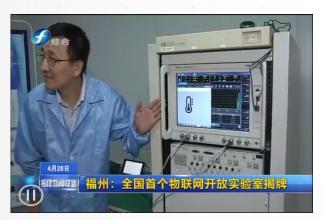
预计到2020年, IoT设备数量将达到50B-Cisco

预计到2025年, IoT设备数量将达到95.5B - IHS Technology

"90% of all Samsung's products will be IoT devices by 2017, and 100% by 2020"

-- BK Yoon Samsung Electronics President and CEO

中国速度——高速成长的 NB-IoT


增加了5000万

Keysight 提供从芯片、模块到应用的整体解决方案

运营商NB-IoT测试平台

福州物联网开发实验室

是德科技为华为NB-IoT开放实 验室低功耗分析提供有力保障

2017-06-30 是德科技快讯

伴随着MWC的召开 NB-IoT成为行业汇聚的又一新焦点

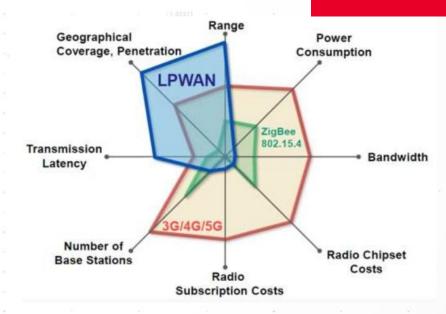
NB-IoT的低功耗、广覆盖、大容量和低成本的优势,以及各种新型垂直行业的蓬勃兴起,让运营商、设备商、芯片商、模组商、以及服务提供商看到了新的增长点。

华为物联网开发实验室

Partner List

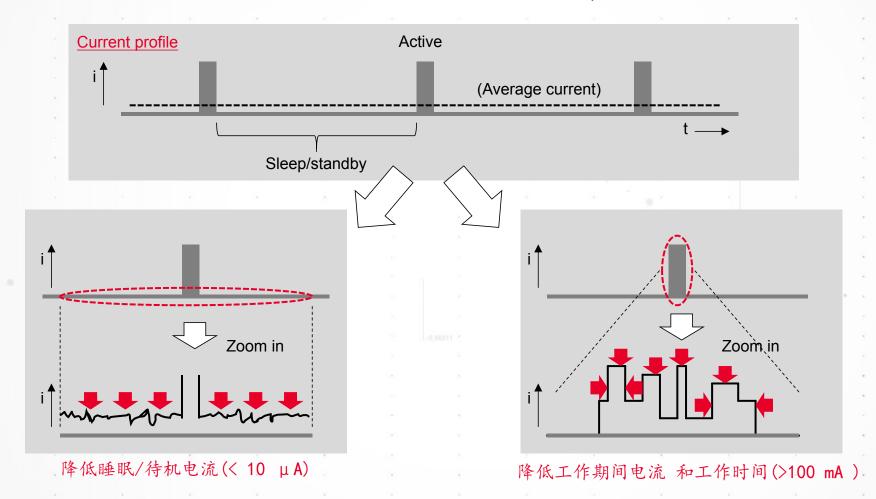
Use Case	Partner		Country
Det Treebier	hereO	0	United Kingdom
Pet Tracking	Oviphone	USBS Oviphone	China
	EDYN	♦ EDYN	USA
	Yunyang	Liouwana	China
Smart Agriculture	Bewhere	P.eWhere	Canada
	MuRata	muRata	Japan
	Pess	Pessi	Austria
White Goods	Haier	Haier	China
write Goods	Midea	mm (Alidea	China
Smart Health Care	Life Sense	ure sense	China
Smart Monitoring	IRexnet	iRex	South Korea
Vending Machine	lierda	lierda	China
Electronic Manufacturing Service	lierda	lierda	China
	Hanwei	2	China
	Hongdian	14	China
Alarm Sensor	GTI	GT/	China
Alarm Sensor	HOTHINK	HOTHINK	China
Smart Bicycle	ofo	ofo	China
Electronic Payment	PAX	O _{PAX}	China
Smart Lock	DESSMANN	- Sun	China
	Gemalto	gemalto	France
	Quectel	QUECTEL	China
NB-loT Module	u-blox	O blox	Switzerland
	Lierda	lierda	China
	China Mobile	◎ 中国移动 Christoph	China
	Lierda	lierda	China
ND-101 1001	Keysight	₩ KEYSIGHT	USA

NB-IoT协会的测试设备商

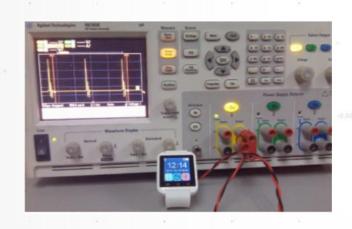

长工作寿命: 低功耗和电池是物联网能否普及的关键因素

低功耗(硬件/软件) + 高品质电池 + 电源管理

- ✓ 实现性能和功耗之间更好的平衡
- ✓ 快速、精准功耗测量和优化,确保更快上市
- ✓ 避免因功耗(续航时间)缺陷引起的巨量召回


低功耗、工作寿命长

loT "设计"是降低功耗的突出手段

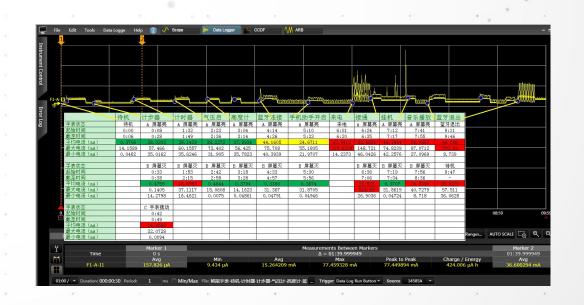

进一步降低间歇性工作设备的电流消耗——PSM, eDRX

耗电精确测量、提升产品的续航时间

- 整机(电池端)功耗分析方案
- 子电路、芯片、器件的功耗分析方案
- 真实工况下的电池容量和电池自放电测量
- 低功耗电源的精确、高效测试

N6705C 直流电源分析仪

单台仪器中整合多种测试仪器的功能

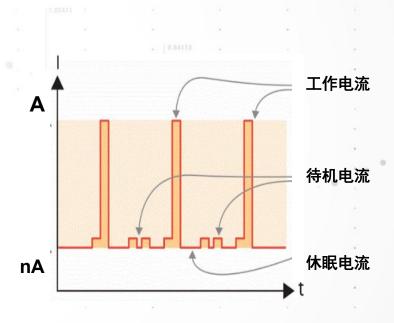


14585A 功耗分析软件

N6705功耗测试四个独特优点:

- 1. 无缝量程切换技术,实现28比特动态,可以轻松测量大范围 (8A-80nA)快速变化的耗电电流波形;
- 2. 高达200 KHz (5us)电流采样率,精确测量脉冲电流;
- 3. 长达1000小时连续数据记录;
- 4. 可视化电流测试软件, 电流测试与操作同步测量。

- ▶ 1 至 4 路高性能电源/负载
- ▶ 数字电压表和电流表 (8A-nA动态)
- ▶ 带功率输出的任意波形发生器
- ▶ 示波器(20万数据/秒)
- ▶ 数据采集(1000小时)



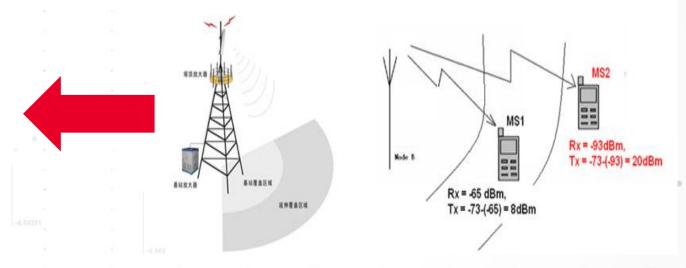
智能终端、IoT(物联网)、AI(人工智能)、VR(虚拟现实)

——耗电测量的挑战

设备耗电特性:大范围变化的动态电流,频率在 KHz甚至更高

- ▶ 更高的电流测量精度
 - · 微安(uA)级休眠电流,甚至纳安(nA)级漏电流
- > 动态电流变化范围大:
 - 从微安级休眠电流到百毫安甚至安培级发射电流
 - 针对不同范围电流都能提供连续,准确的测量
 - 脉冲宽度窄,一般在几百微秒至毫秒级
- > 高采样速率和长时间的连续测量
 - 更快的采样速率,更长的存储深度





NB-IoT模块功耗测试环境及平台

- ▶ 物联网终端或模块, 可以说低功耗是最基础、也是最重要的指标;
- > 工作寿命长是物联网模块推广的关键,某些场合需要10年以上;
- 同样需要保证各种模式下的功耗都比较低,包括降低发射及接受时的功耗,并能够及时进入超级省电模式。

就功耗而言, 接收到的信号小, 发射的功率大都消耗更多的电量

在进行模块的功耗测试时,需要一个完全可控,替代实际网络的设备,UXM NB-IoT基站模拟器就是这样的设备。

NB-IoT模块的PSM模式进驻和功耗测试

PSM 模式进驻和功耗测试(测试条件及步骤如下):

TC-NB-IoT-POWER

PSM 寻呼测试

预置条件	1) 使用 N6705B 电源分析仪 对模块供电,电压设置为模块使用的电压;
	2) UXM NB-IoT 基站模拟器 发射功率为-114.8dBm, 无噪声, 无衰落, 室内常温状态;
	3) 设置 RRC RELEASE 超时定时器为 10 秒;
	4) 不限制上行子载波个数 (single-tone 或 multi-tone), 不限制上行子载波间隔;
	5) RRC_IDLE 态 DRX 周期为 1.28 秒, T3324 定时器为 10 秒, 不使用 eDRX;
6)	6) TAU 周期为 10 分钟。
测试步骤	1) 测试模块成功附着网络;
2)	2) 模块不收发数据, 进入 IDLE 态, 并等待 T3324 超时, 进入 PSM 模式;
	3) I1 向模块发送寻呼,检查模块是否收到寻呼?

PSM (Power Saving Mode):即低功耗模式,其原理是允许UE在进入空闲态一段时间后,关闭信号的收发和AS (接入层)相关功能,相当于部分关机,从而减少天线、射频、信令处理等的功耗消耗。

N6705直流电源分析仪的Data Logger上观察的该测试过程, NB-IoT模块开机, 通过发送和接收消息与UXM NB-IoT基站模拟器通信, 完成上网注册, 接收系统消息T3412(TAU =10 Min)和T3324(Active Timer=10 Sec), DRX(1.28 Sec)。

右图, 光标Marker 1至Marker2间隔为10秒, 在此期间每1.28秒 (约8个接收寻呼的电流脉冲)。

最后正常进入PSM省电模式,电流仅仅1.167uA,顺利完成PSM模式进驻。

虽然PSM模式耗电仅仅1.67uA,但模块在进行系统注册时,最大电流为61.89mA,为PSM模式的6.2万倍(62mA/1uA)。

NB-IoT模块发射状态功耗测试

模块发射状态功耗要求

TC-NB-IoT-POWER

上行功耗

预置条件

- 使用 N6705B直流源分析仪 对模块供电,电压设置为模块使用的电压;
- 2) UXM NB-IoT 基站模拟器 发射功率为-124.8dBm, 无噪声, 无衰落, 室内常温状态;
- UXM NB-IoT 基站模拟器 设置 RRC RELEASE 超时定时器为 10 秒:
- 4) 不限制上行子载波个数(single-tone 或 multi-tone),不限制上行子载波间隔,根据模组自身支持情况选择:
- RRC_IDLE 态 DRX 周期为 1.28 秒, T3324 定时器为 10 秒, 不使用 eDRX;
- 延长版的 TAU 周期(即 T3412 extended)设置为2分钟。

UE接收到的基站信号为-124.8dBm;

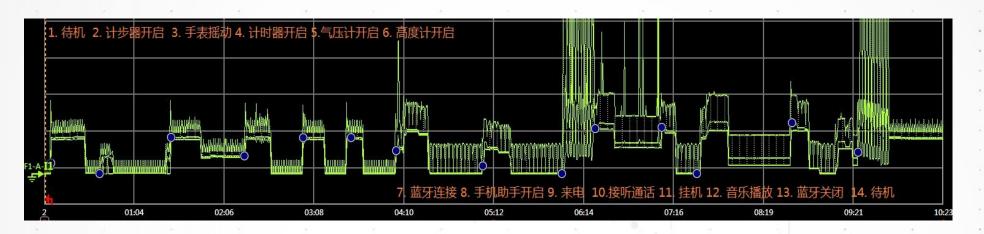
其他测试项目基站信号为 -114.8dBm

按照协议T3324 (TAU为2 Min) 时间,模块从PSM低功耗模式唤醒,重新与网络进行系统更新,获取网络的寻呼消息。

但由于网络信号强度由 -114.8dBm下降为-124.8dBm, 同理, UE的发送功率也相应的增大10dB, 所以最大电流增大到206mA, 是刚才62mA的 3 倍多。

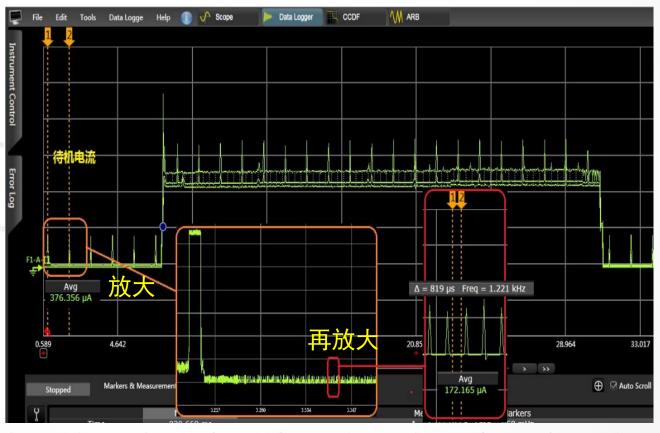


某"智能手表"功耗测试拆装过程


"智能手表"功耗实测——各种模式及状态(10分钟)

- ✓ 14585A启动数据记录仪 Data Logger (持续10分钟)
- ✓ "智能手表" 从待机开始,依次操作"手表" 启动计步器→计时器→气压计→高度计→ 蓝牙→手机助手→来电→通话→音乐播放→断开蓝牙→待机
- ✓ 软件时, 在各操作处设定"事件标签"

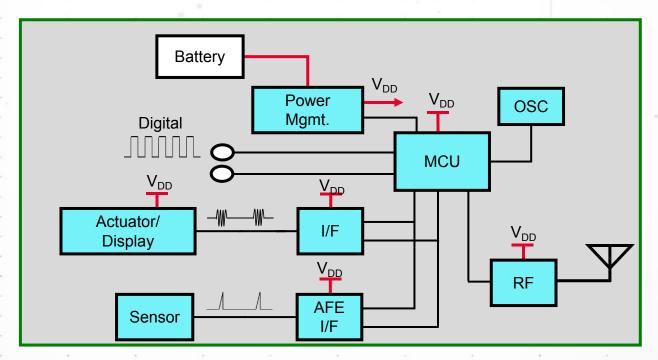
"智能手表"功耗实测——数据分析(可离线)


		待机	显示屏亮	计步器	计时器	气压启	高度计	蓝牙连接	来电	蓝牙通话	挂机	音乐播放	蓝牙退出
手表料	伏态	待机	A 屏幕亮	C 手表摆动	B 屏幕灭	B 屏幕灭	B 屏幕灭	A 屏幕亮	A 屏幕亮	A 屏幕亮	A 屏幕亮	A 屏幕亮	蓝牙退出
起始印	村间	0:00	0:08	0:42	1:53	2:42	3:18	4:14	6:01	6:24	7:12	7:41	9:11
截至印	时间	0:06	0:28	0:49	2:15	2:58	3:28	4:26	6:20	6:35	7:17	7:55	9:46
平均电流	Œ (mA)	0. 3706	38. 0202	16. 6543	18. 6953	0. 4644	0. 3794	44. 1605	65. 9413	52. 4654	44. 3494	54. 0867	46. 046
最大电流	Ē (mA)	14. 1589	57. 466	32. 0728	37. 1117	15. 0608	14. 1623	75. 708	319. 6208	148. 721	74. 8239	87. 0712	205. 49

*电流单位: mA

"智能手表"功耗实测——不一样的待机功耗?

这样的N6705是否你正在寻找的功耗分析手段!



- 1. 无缝量程切换技术, 28 比特动态, 可以轻松测量大范围 (8A-80nA) 快速变化的耗电电流波形;
- 2. 高达200 KHz (5us)电流采样率,精确测量脉冲电流;
- 3. 长达1000小时连续数据记录;
- 4. 可视化电流测试软件14585A, 电流测试与操作同步测量(电流优化必备)。

耗电精确测量、提升产品的续航时间

- 整机功耗分析方案
- 子电路、芯片、器件的功耗分析方案
- 真实工况下的电池容量和电池自放电测量
- 低功耗电源的精确、高效测试

CX3300 电流波形分析仪

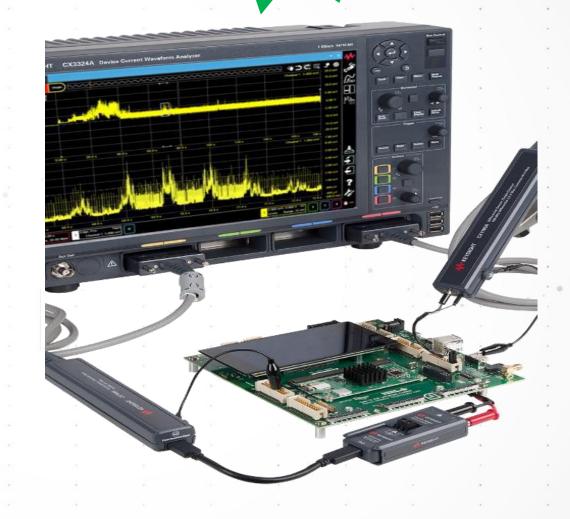
主要指标

▶ 测试电流范围: 10A 至150pA

▶ 采样速率: 1GSa/s

▶ 测量带宽: 200MHz

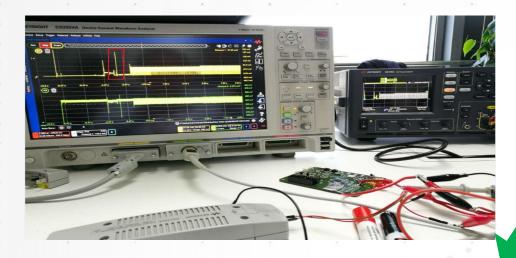
▶ 测量动态: 14比特(高速模式) 16比特(高分辨率模式)


> 大屏、多点触控 示波器操控

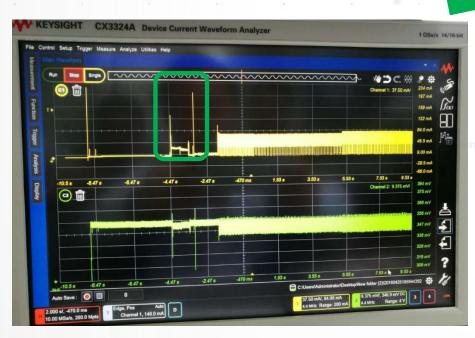
▶ 存储深度: 256M pts/通道

▶ 通道数: 2或4通道

▶ 电压测量: 噪声(RMS) < 25uV


CX3300曝光的低功耗IC芯片的电流波形

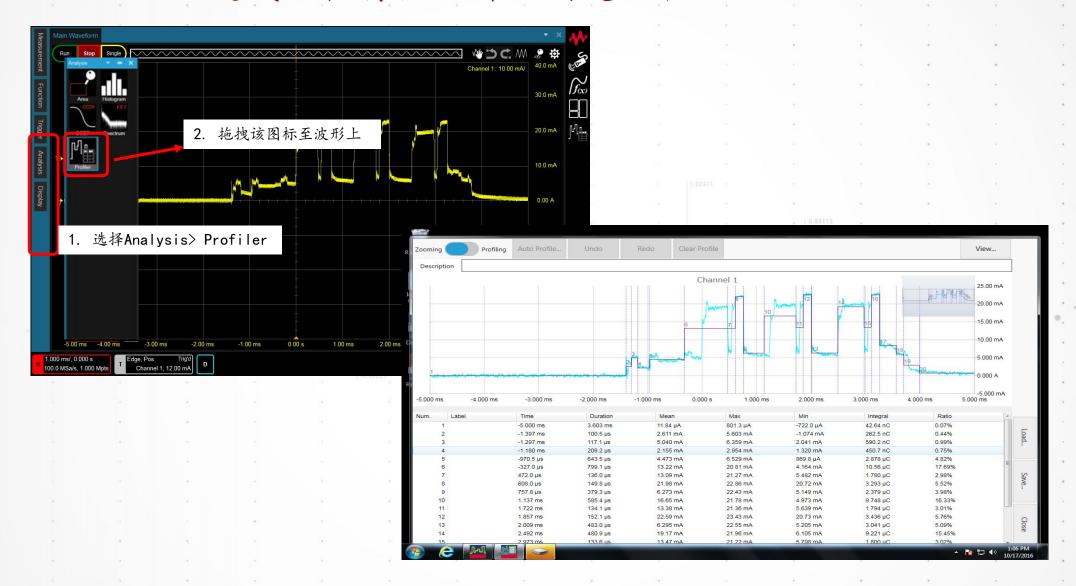
低功耗测量时, 休眠模式及工作模式下都需要精确的电流测量!



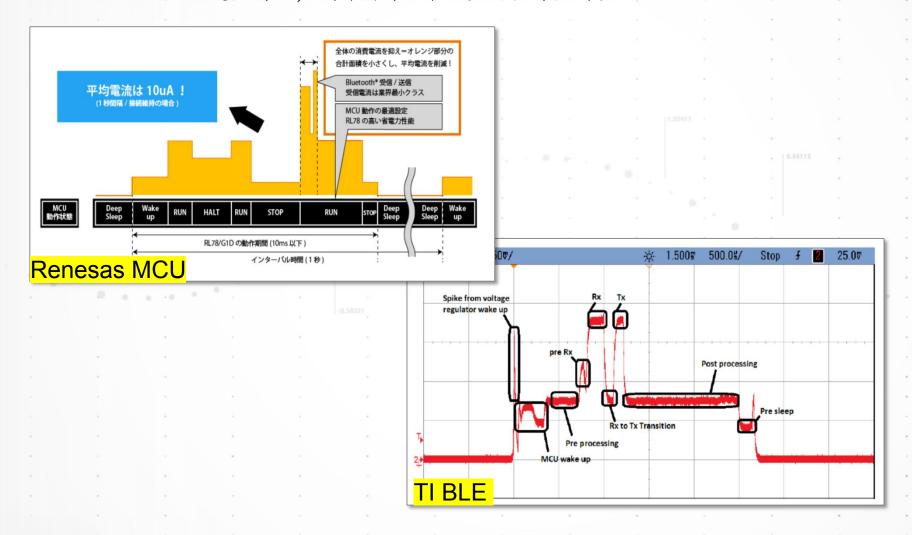
长时间又不失细节——Auto Save(1)

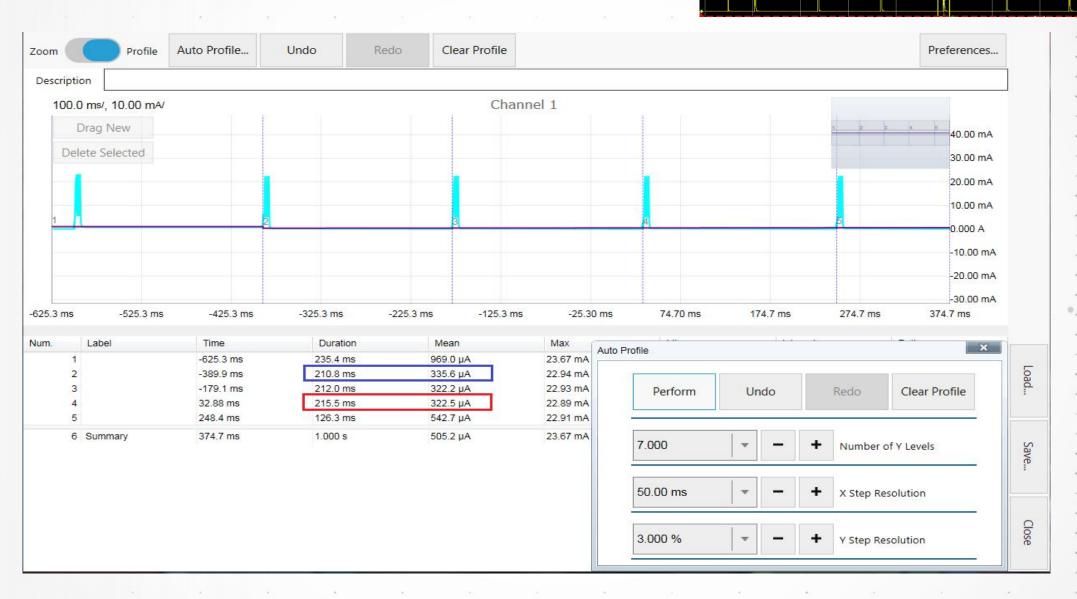
将N6705 与 CX3300 连接到同一个 NB-IoT 模块

长时间又不失细节——Auto Save (2)



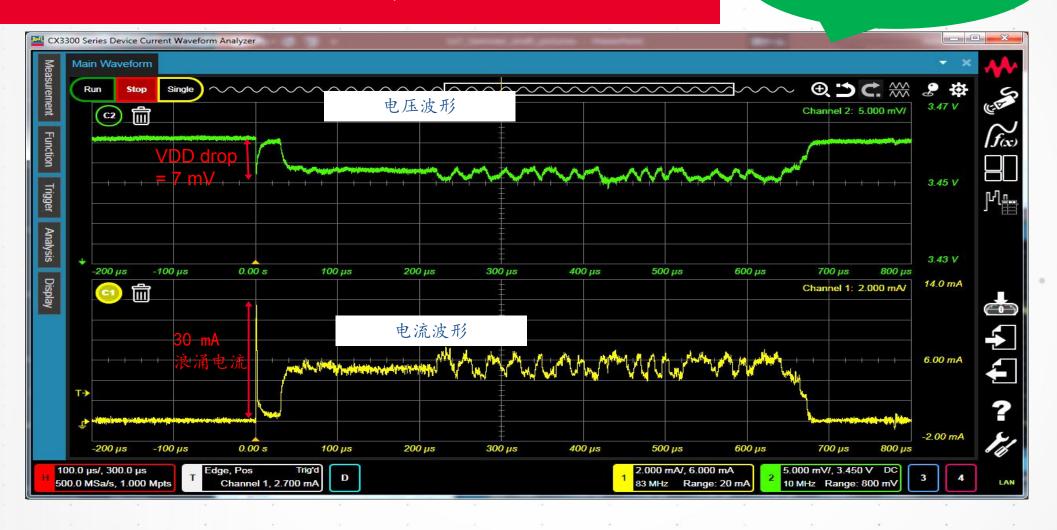
- ▶ 储存深度256MSa
- ▶ 120秒 X 2MSa/秒
- ▶ 总共 n 次触发
- ▶ 触发 (事件) 之间的时延


CX3300 "一键式功耗特征"自动创建功能


小提示:依照DUT的工作状态来创建

- > 功耗测试通常需要多次测试,并进行功耗调试和优化
- > 可以依照已知的电流变化特征,或时间特征来调整功耗特性列表

功耗特征自动提取—多周期电流测量



电源完整性分析——VDD供电稳定性测试

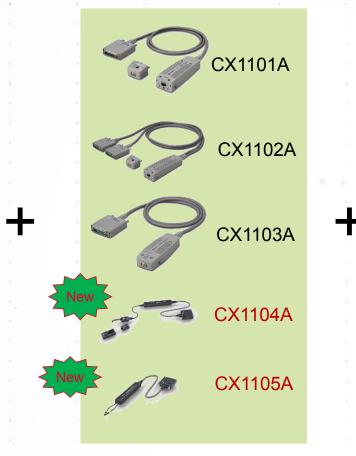
通过精密电压和电流波形同步触发、对比,分析电源完整性!

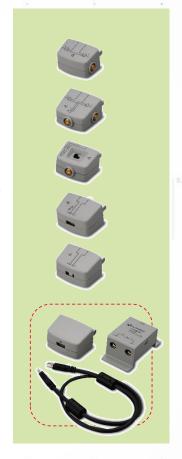
用电压作为触发源!

软件问题查找—控制信号与电流波形比较

用Dn作为触发源!

通过对比数字信号触发, 电流波形对比, 查找分析软件控制缺陷!




CX3300 构成及配置

主机

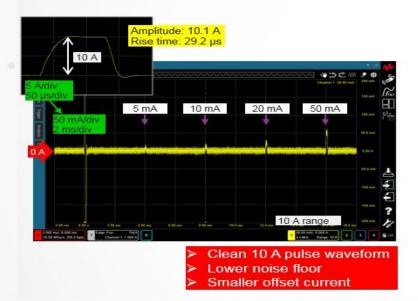
探头

转接头

CX1151A + N2843A

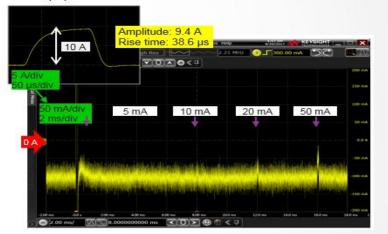
CX1100 电流探头系列

Sensor	Image in new color	Features	Key applications
CX1101A Single Channel Current Sensor		40 nA to 1 A (10 A)100 MHz40 V	General purposeIoT, Wearable, MedicalSensorSemiconductor
CX1102A Dual Channel Current Sensor		40 nA to 1 A 100 MHz 12 V	IoT, Wearable, Medical IoS4113
CX1103A Low Side 100 pA Current Sensor		150 pA to 20 mA200 MHz0.5 V	On wafer semiconductor device NVM (ReRAM, PRAM, MRAM) Display devices (OLED)
CX1104A Selectable Shunt Current Sensor		1 μA to 15 A20 MHz40 V	General purposeWiFiActuator, Sensor,
CX1105A Ultra-Low Noise Differential Sensor		 1 μA to 100 A 100 MHz 40 V / 6 V 	 Mobile device, SoC, FPGA, APU, MPU, ECU Semiconductor



CX1104A 大电流探头系列

Resistive Sensor Head	Range (Upper /Lower)	Typical R _{IN}	Noise (rms) @20 MHz NBW	Noise (rms) @2.5 kHz NBW ²	Maximum Bandwidth (-3 dB) ³
CX1211A	15.0 A	5.5 mΩ	48 mA	1.6 mA	
	10.0 A	2.0 III 2.0	8.8 mA	160 μΑ	
CX1212A	10.0 A	0.0	24 mA	800 μΑ	
	5.0 A	8.0 mΩ	4.4 mA	80 μΑ	_
CX1213A	5.0 A	00 0	6.0 mA	200 μΑ	 3
	1.25 A	23 mΩ	1.1 mA	20 μΑ	
CX1214A	3.0 A	F0 0	2.4 mA	80 μΑ	— 20 MHz
	500 mA	53 mΩ	440 μΑ	8.0 μΑ	_
CX1215A	2.0 A	100 - 0	1.2 mA	40 μΑ	
	250 mA	103 mΩ	220 μΑ	4.0 μΑ	
CX1216A	250 mA	100	120 μΑ	4.0 μΑ	
	25 mA	1.0 Ω	22 μΑ	400 nA	_

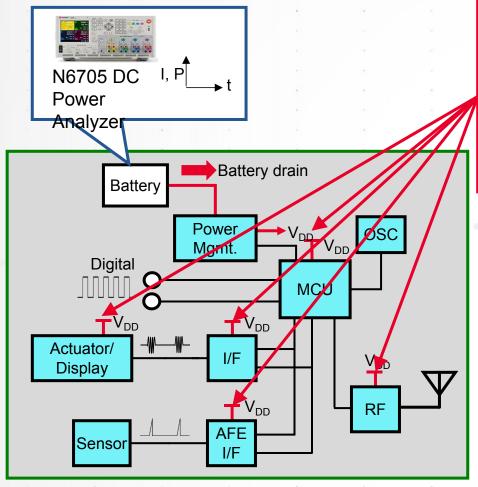


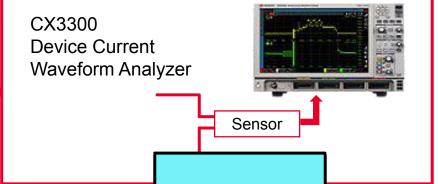
Keysight CX3324A with CX1104A/CX1121A(Rin= $5.5 \text{ m}\Omega$) (Measure with 10 MSa/s, 5 A/div)

TCP312A current probe


(Measure with 10 MSa/s, High Res, 5 A/div with Keysight a S-Series oscilloscope)

CX1105A 差分电压(电流)探头系列


Range	RMS noise		Maximum	Maximum common	
	20 MHz NBW	2.5 kHz NBW ⁴	bandwidth (-3 dB)	mode voltage	
2.5 V	1100 μV	200 μV		. (0)/	
1 V	1100 μV	200 μV		± 40 V	
250 mV	45 μV	3.0 μV	100 MHz	8.	
100 mV	24 μV	1.3 μV		± 6 V	
25 mV	20 μV	400 nV	-		



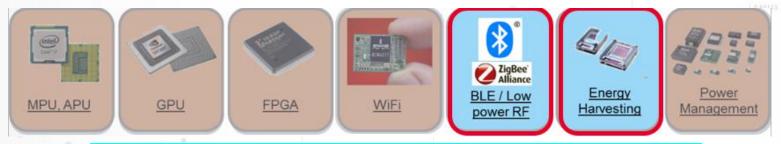
CX3300 与 N6705 两者的异同

1. 多种电流探头,100A至150pA电流, 可测量电路上任意位置的电流;

- 2. 电流测量带宽高达200MSa/s, 能满足MPU、MCU、NVM、Sensor等高带宽需求:
- 3. 示波器操控平台,波形分析和测量丰富,且触发功能全面;
- 4. 电流与电压同步测量,分析电流脉冲对电压完整性;
- 5. 外部电源供电。

CX3300

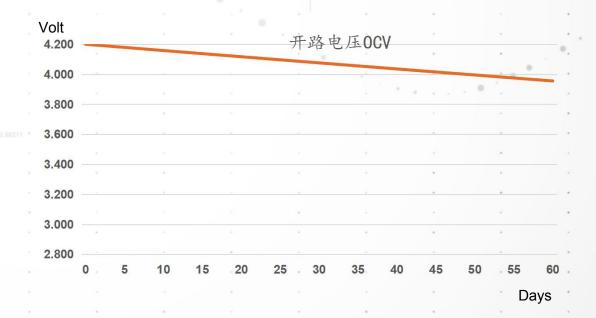
N6705C


- 1. 电池端电流/功耗分析理想平台;
- 2. 替代电池供电;
- 3. 高达1000小时的电流波形连续记录;
- 4. 测量带宽在200KSa/s以内;
- 5. 多通道时采样率减半。

你是否正在寻找以下产品精密功耗测试方案——CX3300

NVM存储材料、传感器、Wafer、低功耗处理器MCU

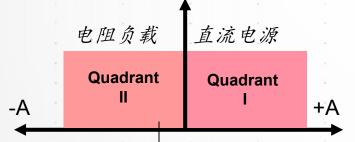
GPU、MPU、APU、FPGA高峰值电流的处理器, BLE/WiFi模块


穿戴、医疗、AR/VR、智能手机、汽车电子产品

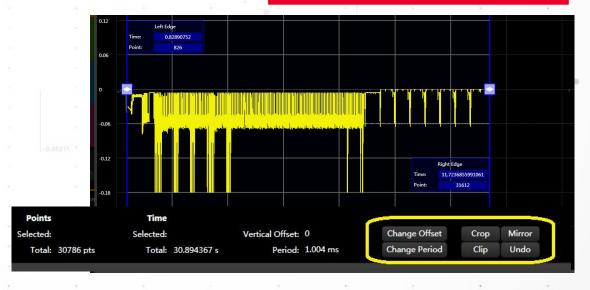
耗电精确测量、提升产品的续航时间

- 整机功耗分析方案
- 子电路、芯片、器件的功耗分析方案
- 真实工况下的电池放电和电池自放电测量
- 低功耗电源的精确、高效测试

类型	自放电率 / 月		
锂离子纽扣电池	• .	1%	
碱锰圆形电池		2 %	
锌碳圆形电池		4%	
铅蓄电池	i.	20-30%	
镍镉/镍氢电池		35%	

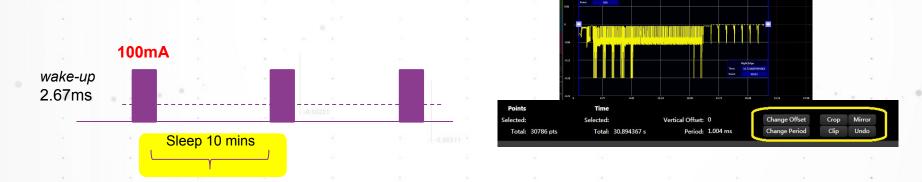

还原真实耗电模式特性——电流录制和回放

使用电流电平触发功能, 200KSa/s高速采集输出电流, 在软件中保存波形



KEYSIGHT TECHNOLOGIES

波形镜像后,使用Arb功能,将 翻转后的电流波形下载到N6705 C中, 回放刚才开机瞬间的电流波形

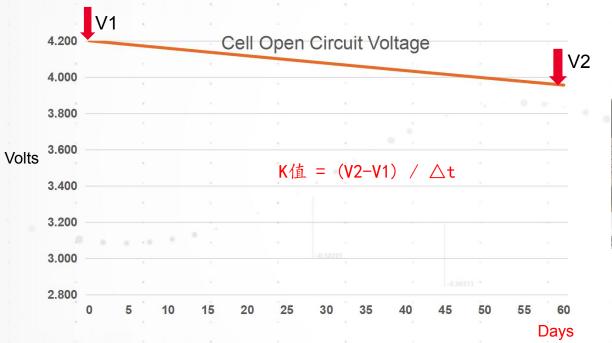


可截取时间、幅度、镜像、偏置等处理

如何获得 更准确 NB-IoT 的电池工作寿命?

10年不换电池! 这是很多新型NB-IoT设备提出的要求, 例如无线水表、智能传感器等。做到这个很难, 而准确的测试和评估更是不易, 毕竟谁也不可能花费10年的时间, 在各种工作场景下进行电池续航时间的测试。

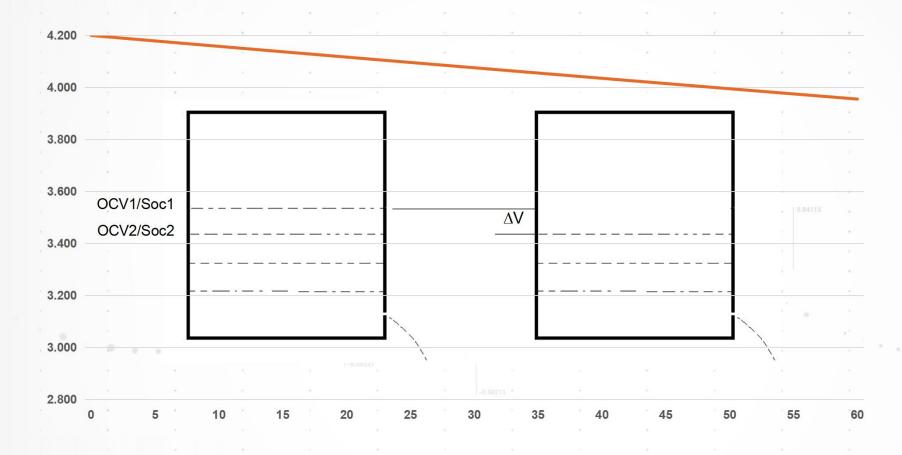
1) 电池的续航时间与多个因素有关,最关键的是产品本身的低功耗特性, 还有电池本身自放电特性。 例如一个10000mAH 的电池, 如果自放电率是50uA, 10年就是 10年 X 365天 X 24小时 X 50 uA = 4380 mAH, 约50% 的电能被自身漏掉了,所以有效的电池电量其实只有50%


2)测试时,用N6705电源分析仪替代IoT模块对电池进行放电。可将休眠状态从 10min 降低到 100mS,使整个测试过程加快了6000倍!

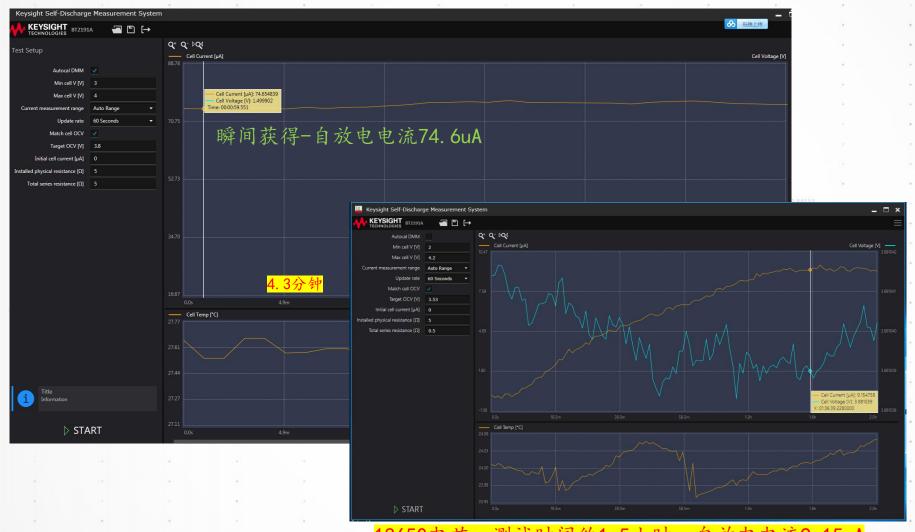
对于预测10年工作时间的设备来说,一天之内即可完成评估!

锂电池自放电测试的困扰——测试周期太长

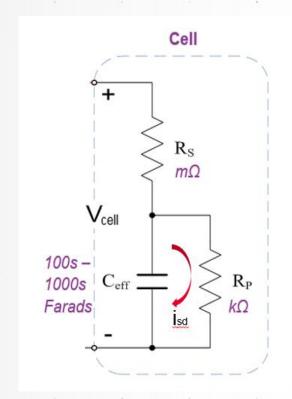
• 问题的关键是等待 <u>多长时间</u>才足够准确反映出电芯的自放电特性?因为电芯开路电压OCV明显变化需要几周甚至几个月。而且通过OCV测试的K值并没有直接的自放电电流值。

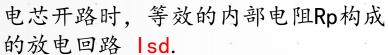


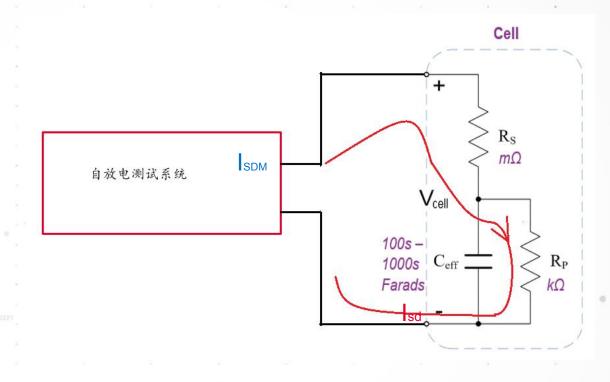
• 请问这是你遇到或看到的困扰吗?


电芯的自放电率示意图 (本质是电量的变化 = 1sd * t)

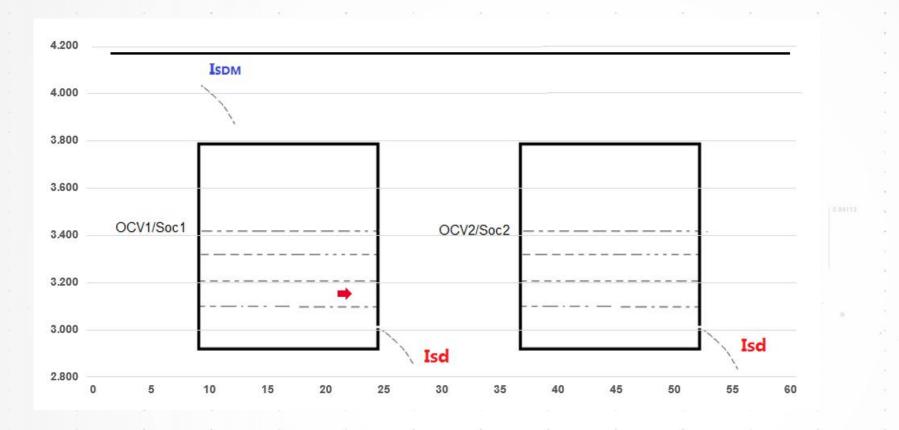
假设用一个水杯代替电芯,水杯的高度对应电芯电压Ocv (nV),该水位对应的容积代表电芯电量Soc (n%)。 自放电好比水杯有一个很小的洞,但只有当水位变化足够大时才能被察觉。


BT2100 SDM测试系统界面及实时结果

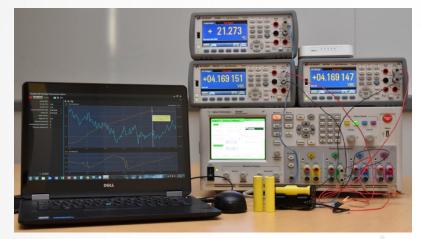



8650电芯,测试时间约1.5小时,自放电电流9.15uA

BT2100自放电测试的原理



自放电测试系统保持电芯电压/Soc, 因此, 电芯没有被充电(Soc减少), 也没有被充电(Soc增加), 此时测试系统提供的电流 | som 就等于 | sd。

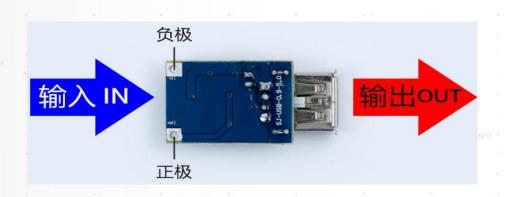

BT2100自放电测试原理——示意图(本质是速度Isd)

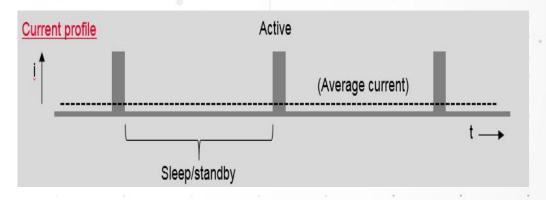
假设用一个水杯代替电芯,水杯的高度对应电芯电压Ocv (nV),该水位对应的容积代表电芯电量Soc (n%)。 虽然水杯依然有一个很小的洞,但由于外部补充的速度 (ISDM)与漏水速度 (自放电电流 Isd) 一样,且电芯电压OCV和SOC均保持不变,所以测量 ISDM 就等于 Isd.

电芯自放电系统综述

BT2191A 自放电测试系统

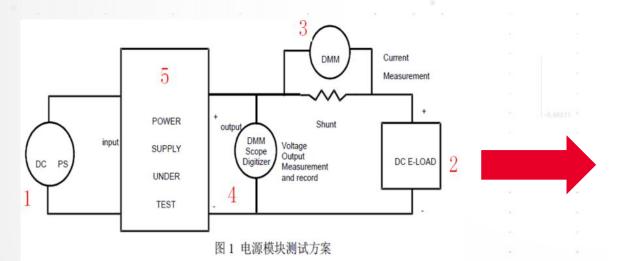
- 1. 基于N6705,高精度DMM搭建系统
 - n小时内完成自动
- 3.

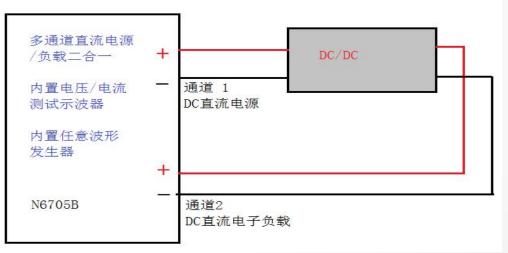

BT2152A 自放电分析仪, 4-32 通道


多通道电芯自放电性能测试方案电芯或电池的电芯自放电快速筛选

耗电精确测量、提升产品的续航时间

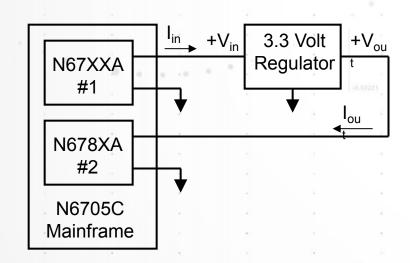
- 整机功耗分析方案
- 子电路、芯片、器件的功耗分析方案
- 真实工况下的电池放电和电池自放电测量
- 低功耗电源的精确、高效测试

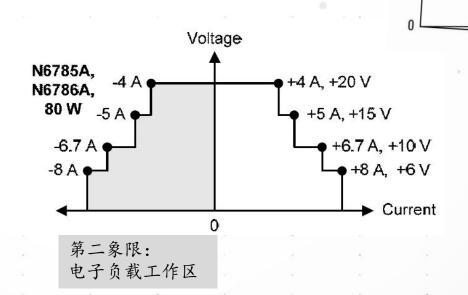



N6705B 直流电源分析仪

单台仪器中整合多种测试仪器的功能

- ▶ 模块化设计,38种模块任意组合
- ▶ 1 至 4 路高性能电源/负载
- > 数字电压表和电流表
- ▶ 带功率输出的任意波形发生器
- > 示波器数据采集

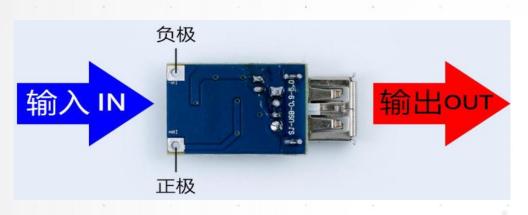




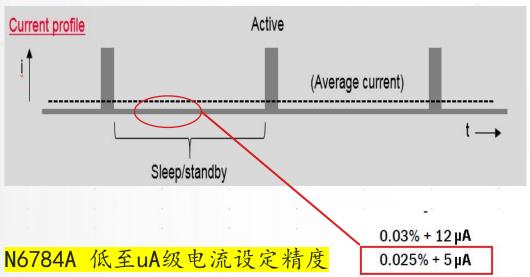
多通道电源+电子负载组合

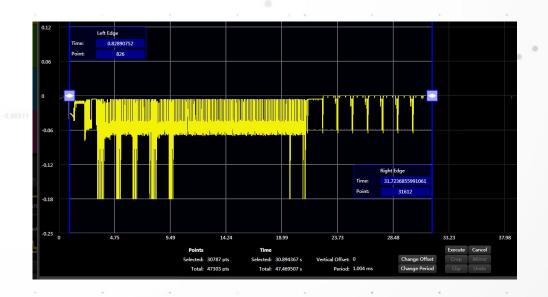
测试您DC-DC电源的各项指标

- 完整的两象限工作状态,可以作为电子负载使用
- 100 kHz 任意波形带宽,可以生成所需要的任意波形电压、电流波形、脉冲、噪声等信号
- 200KHz 采样率, 作为电子负载, 直接观察输入电压、电流波形
- 低电压状态下工作正常, 无导通电压要求



Max. power contour


Current


电子负载工作区域

真实负载电流下的DC-DC特性分析——电流录制和回放

效率以及效率分布曲线——loT设备电源长时间工作在PSM模式

测试描述; 对输出功率进行调节, 测试输出功率与输入功率比值, 即效率随输出功率变化。

1	最大效率	75.5%,(输出为-245mA)
2	输出效率高于 70%范围	-70mA 至-500mA
	ARB 设置	输入 12V, 负载: 电流从 0 到-500mA,扫描时间 10S.

静态指标测试(1)——输出精度及纹波

测试描述;输入12V正常工作电压,测试输出电压大小。

1 .	输出 V2 电压平均值。	5. 32V e
2 &	输出 V2 电压 峰峰值。	29mV .
φ	设置。	输入 12V,负载-200mA。

静态指标测试(2)——空耗

测试描述;输出端未连接任何负载的情况下,测试输入端的电压和功率。

1.	V1 输入电压均值。	12. 0008V o
2 .	I1 输入电流均值。	6.75mA
3 🕫	P1 输入功率均值。	81mW -
4 +	I1 峰峰值。	31mA -
5 -	纹波噪声频率 。	3. 03KHz -
ę	设置。	输入 12V。

动态指标测试(1)——开机参数测试

测试描述; 测试输入电压上电时的浪涌电流及输入, 输出电压上升时间和时延。

1	输入 V1 上升时间(10%-90%)	2.92ms
2	输出 V2 上升时间(10%-90%)	2.5ms
3	V1, V2 时延	0.5ms
4	输入 I1 最大电流	712mA
	设置	输入 12V,负载-200mA

动态指标测试 (2) ——关机参数测试

测试描述; 测试关机时输入端浪涌电流及输入、输出电压下降时间和时延。

1	输入 V1 关机时间	3.6ms
2	输出 V2 关机时间	2.5ms
3	V1, V2 时延	2.5ms
4	输入 11 最大电流	-862mA
	设置	输入 12V,负载-200mA

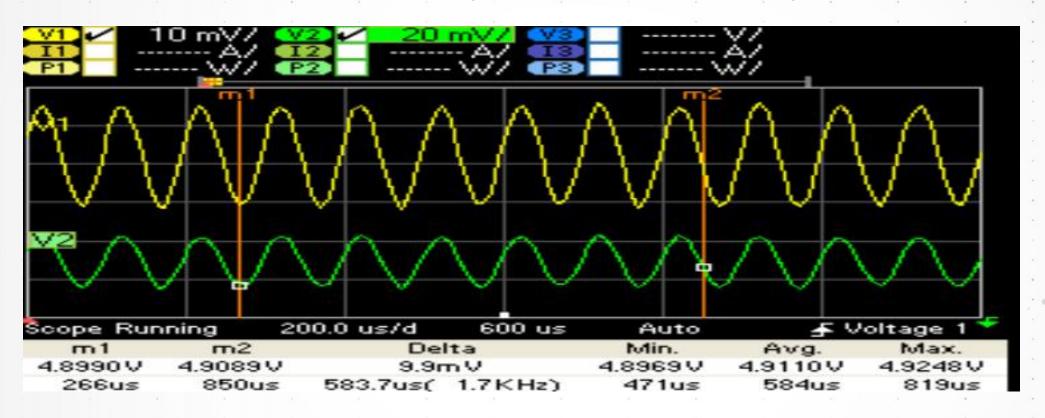
动态指标测试 (3) ——负载调整率

测试描述;输出负载变化时,测试输出电压波动和稳定性。

1 .	输出 V2 电压最小值。	2. 53V .
2 .	输出 V2 电压最大值。	5. 44V .
ę.	设置。	输入 12V,负载 0/-500mA,500Hz。

动态指标测试 (4) ——源调整率

测试描述; 输入电压变化时, 测试输出电压波动和稳定性。



1 .	输入 V1 电压。	10/20V, 50Hz
2 .	输出 V2 电压平均值。	5. 33V _e
3 .	输出 V2 电压峰峰值。	105mV .
p.	输入设置。	10-20V, 500Hz, 负载-200mA。

动态指标测试 (5) ——纹波抑制比

测试描述;在源端注入特定幅度频率的纹波噪声,同时在输出端测量纹波的幅度值,并计算纹波抑制比。

1 🕫	输入 V1 电压。	12V, 1. 7KHz, 40mV
2 🕫	输出 V2 电压平均值。	4. 911V -
3 🕫	输出 V2 电压峰峰值。	27mV .
+	输入设置。	1.7KHz, 40mv

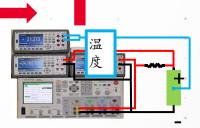
功耗分析方案总结

·续航能力 优化"三套件"思考

器件、芯片,整机功耗测量

APP软件功耗分析

电源模块、电池容量、自放电测量



CX3300 电流分析仪

N6705C 电源分析仪

BT2191A 自放电测试系统

联系是德科技

了解是德科技更多信息,请访问是德科技公司网站:

http://www.keysight.com.cn

或致电 是德科技 电话客服中心:

800-810-018-9

400-810-018-9

