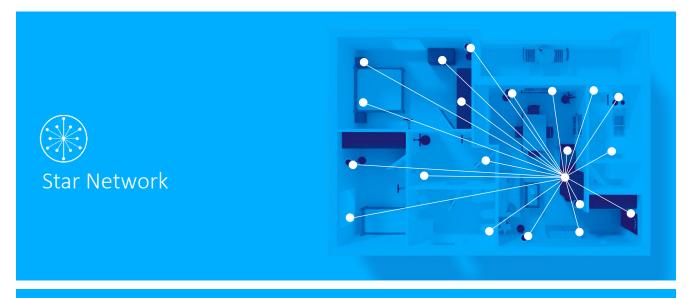
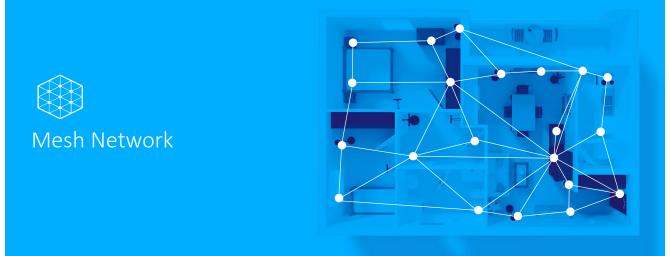

蓝牙mesh在住宅和商业照明的应用

JOEY QIU/邱意 | REGIONAL PRODUCT MARKETING MANAGER OF IOT, APAC

全球智能照明市场


- **商业**:商业照明作为最大、最多样化的产业主导着全球智能 照明市场(在酒店、酒馆和酒店等相关行业,商业智能照明 在提供具有吸引力的节能照明方面扮演着重要的角色)
- **住宅:**随着国内能源效率意识的提高,住宅部分预计在不久的将来会有更大的增长。更会产品价格的下降将刺激需求


- 智能照明的最大销量动能在亚太地区(此一趋势主要是由于该地区消费设备成本较低。此外,该地区智能家居的上升趋势也支持了亚太地区智能照明市场的增长。)
- 北美洲和欧洲也为该地区智能照明的大规模部署做出了 贡献。

Source: BIS

为什么是Mesh网络?

- 通过多跳通信扩展网关或移动设备的 连接范围
- 通过单个网络中支持大量设备来增加 系统规模

- 通过不依赖单个节点或路由的多路径 消息传递网络提高系统可靠性
- 通过设备到设备通信提供最佳回应性

为什么是蓝牙mesh?

- **规模:** 蓝牙mesh可以从10个小节点网络扩展到数千个节点的商业级别网络
- **手机连接性**: 100%的手机和平板电脑支持蓝牙使得方便设置和网络管理
- **工业级安全技术:** 蓝牙mesh实现了最先进的两 层安全模型
- **完整的堆栈互操作性:** 一个蓝牙技术联盟定义和驱动标准从RF层到应用层
- **网关是可选的**: 对于简单的系统,网关是不需要的
- 未来趋势: 蓝牙mesh将不断发展,以满足市场的需要和需求,并配合蓝牙LE功能比如5.1

蓝牙mesh在住宅照明的应用 易于安装和品牌识别

简易消费者用户体验为基础的应用程序设置

三分之二的消费者喜欢在他们的产品中使用蓝牙

配置,场景,和调度可以分散到各个节点 因此,蓝牙mesh可以独立运行,不需要专用网关

生态系统的支持

小米米家生态系统基于蓝牙mesh 阿里巴巴天猫精灵也支持蓝牙mesh

蓝牙mesh在住宅照明的特性

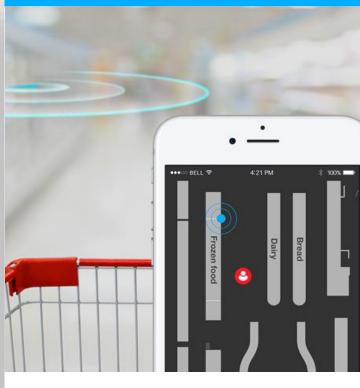
- 基于智能手机应用程序的设置
 - 通过应用程序的设置,形成最简单的用户体验
- 灵活的照明控制
 - 开关
 - ■调光
 - ■色温
 - 色相和饱和度
- ■场景和调度
 - 带时间调度的照明场景
- 低功耗节点 (LPNs)
 - 低功耗运行适用于电池供电传感器和控制

蓝牙mesh用于商业照明

规模和安全

蓝牙mesh支持办公和建筑规模部署 所需的大型网络

蓝牙mesh具有双层结构,满足了商业应用的安全需求

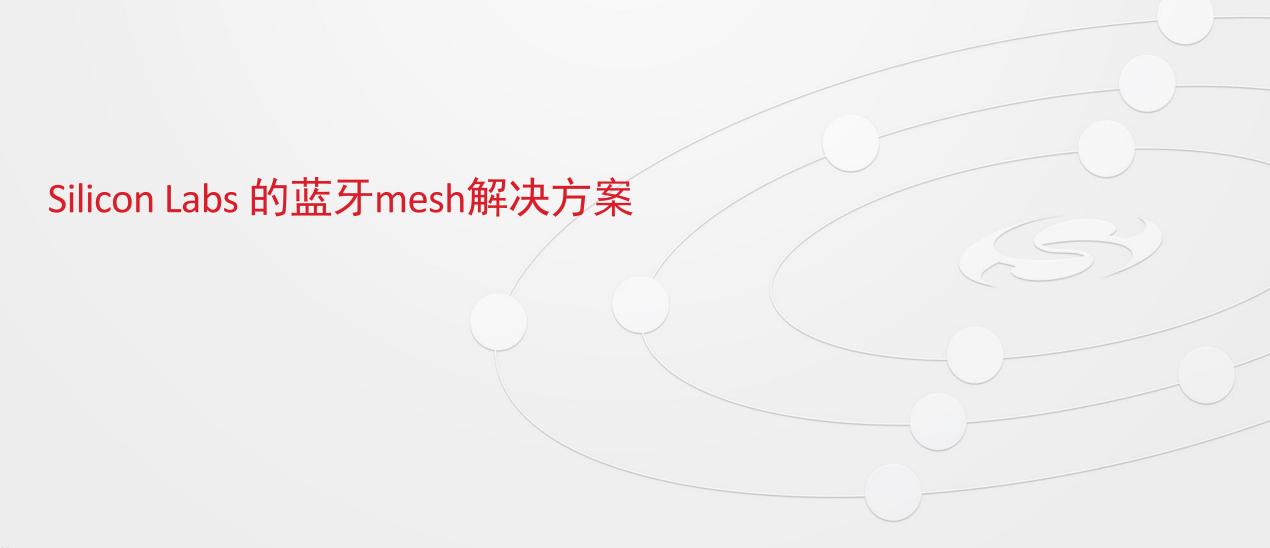

可用于商业应用

内置模型的采光、占用感应、场景 和时间表

互操作性: 网络可以由来自多个供应商的组件


支持室内定位服务

蓝牙mesh照明基础设施为基于蓝牙 的定位服务提供了基础设施


支持室内定位、找路或资产跟踪等 应用程序

蓝牙mesh用于商业照明的特性

- 大规模网络
 - 办公和建筑规模的网络很容易需要数百个节点
- 智能手机应用程序的设置
 - 便于安装和映射设备位置到平面图
- 自动采光和使用感应
 - 一种基于环境光水平和使用的照明控制的自动 框架
- ■场景和调度
 - 带时间调度的照明场景
- 低功耗节点 (LPNs)
 - 低功耗运行适用于电池供电传感器和控制

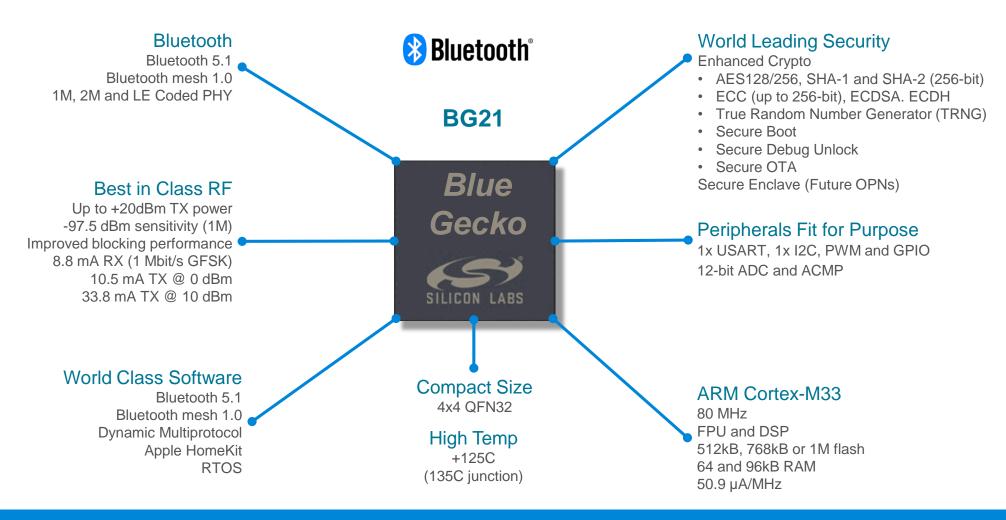
蓝牙解决方案-市场导向

■ 专业知识: 15年以上的商业蓝牙解决方案

■ 功能: 蓝牙网络和蓝牙5.1 AoA/AoD首次上市

■ **灵活性**:提供最广泛的解决方案,从多协议 SoC到认证模块和内部开发的蓝牙软件

■ 生产力: 先进的专利网络分析和能源分析应用



广泛的蓝牙mesh组合

BG21: 优化的电源驱动的蓝牙mesh设备

Best RF Performance, Security, +125C and Optimized for Bluetooth Mesh

BG22: 优化电池供电型蓝牙LE和mesh LPN

Optimized

适用于大批量产品的安全蓝牙5.2 SoC

射频

Bluetooth 5.2 +6 dBm TX -99 dBm RX AoA & AoD

超低功耗

3.6mA Radio TX
2.6mA Radio RX
1.4uA EM2 with 32kB RAM
0.54uA in EM4
RTC in EM4

世界级软件

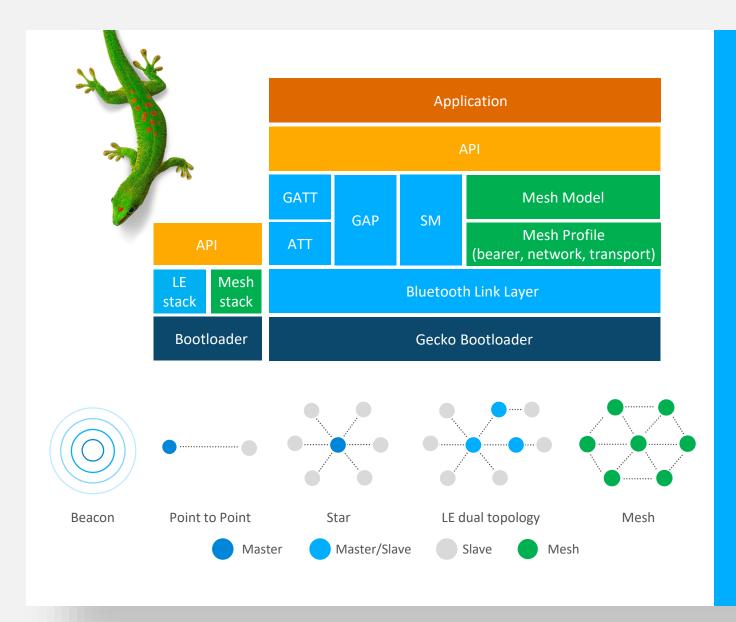
Bluetooth 5.2 Bluetooth mesh LPN Direction Finding

紧密的尺寸

5x5 QFN40 (26 GPIO) 4x4 QFN32 (18 GPIO) 4x4 TQFN32 (18 GPIO)

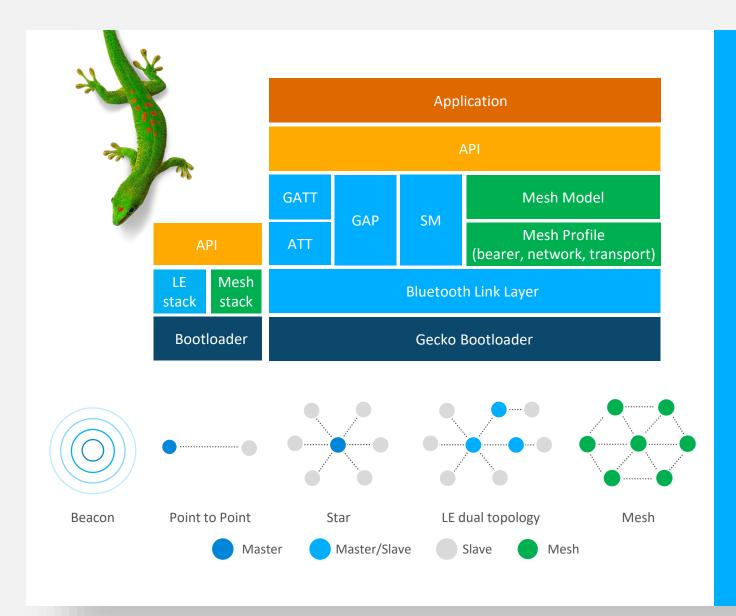
ARM Cortex-M33 信任域

76.8 MHz FPU and DSP 352/512kB of flash 32kB RAM

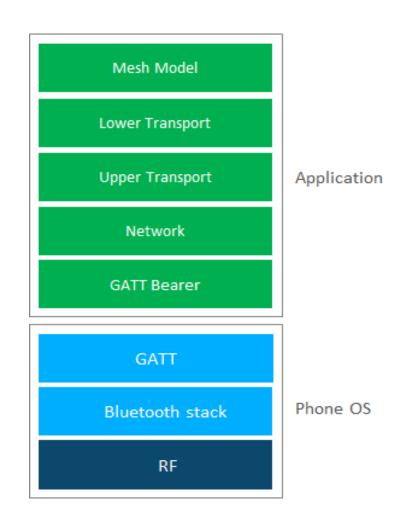

适合用途的外围设备

2x USART, 2x I2C, 2x PDM and GPIO 12-bit ADC (16 channels) Built-in temperature sensor with +/- 1.5 °C 32kHz, 500ppm PLFRCO

安全性能


AES128/256,SHA-1, SHA-2 (256-bit) ECC (up to 256-bit), ECDSA and ECDH True Random Number Generator (TRNG) Secure boot with RTSL Secure debug with lock/unlock

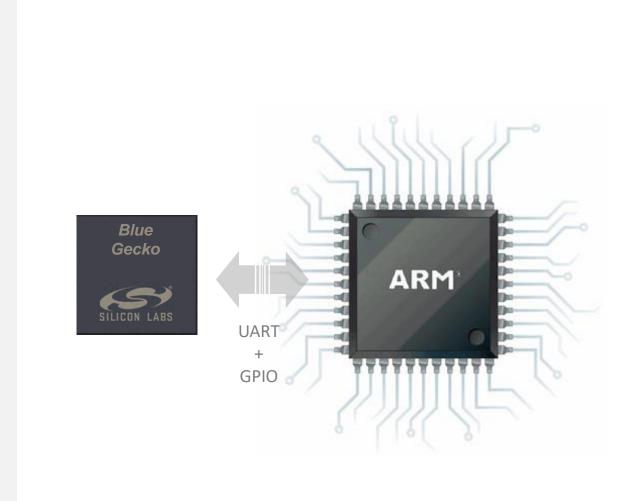
Silicon Labs 蓝牙软件: 蓝牙 5.1


- 蓝牙 5.1
 - 到达角(AoA)
 - GATT 缓存
- 蓝牙5
 - 1M, 2M 和 LE 编码的 PHYs
 - 扩展广告:大数据包,所有渠道和PHYs
 - 随机广告
 - 广告集和扫描事件报告
- 蓝牙 4.2 特色
 - LE 安全连接和 LE 双向拓普
 - LE 数据长度扩展和LE隐私1.2 (slave) 和白名单
- 中心/随机I/广告商和扫描仪
 - 多达16个连接和5个广告集
 - 广告客户,扫描器和LE连接或网的任何组合
 - 任何以GATT为基础的服务或主页
 - 安全OTA超越GATT

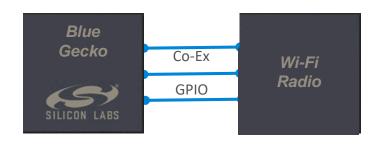
Silicon Labs 蓝牙软件: 蓝牙mesh 1.0

- Mesh 简介
 - 中继,代理,友好和低功耗功能
 - ADV和GATT承载
 - 所有其他网格轮廓特征
- Mesh 模型
 - 运行状况和配置模型
 - 所有通用模型
 - 照明:开/关,调光和CTL
 - 传感器型号
 - 供应商型号
- 蓝牙mesh 和 LE 同时运营
 - 网格与信标
 - 具有LE连接的网格
 - 扫描网格
 - 带EnOcean交换机的网格

蓝牙mesh应用程序开发工具包 (ADKs)


- iOS/Android 没有本地的蓝牙mesh支持
- 但是,他们实现了蓝牙LE堆栈
 - 手机上的LE堆栈和APIs可用于发现、连接、GATT,和交换与通过GATT实施代理或预配服务的蓝牙mesh节点的数据
- Silicon Labs 提供了蓝牙mesh堆栈
- 可以集成到应用程序的数据库
- 实现了蓝牙mesh的模块和简介
- 支持GATT承载进行配置和代理连接
- 提供用于配置,配置和控制节点的API

蓝牙mesh应用程序开发工具包 (ADKs)

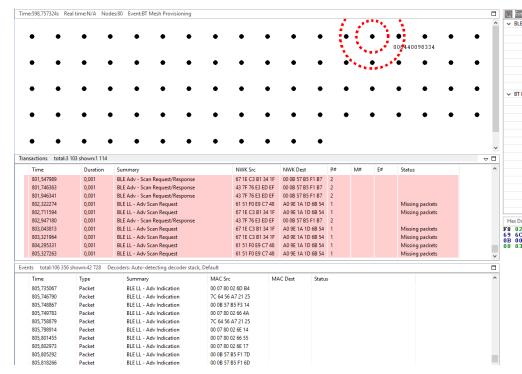

- Silicon Labs ADKs 支持iOS和Android应用程序开发蓝牙mesh
- ADKs 内容
 - Silicon Labs 的蓝牙mesh堆栈适用于Android和iOS
 - 用于蓝牙mesh操作的Swift (iOS)和Java (Android) API
 - 适用于iOS和Android的参考应用程序和源代码
 - iTunes和Google Play中的演示应用
 - API和入门文档
- ADK 特色
 - 通过GATT配置
 - 通过GATT或通过代理节点进行配置
 - 设备分组(发布和发布设置)
 - 发布和订阅消息
 - 节点重置
 - DCD和设备信息输出用于调试

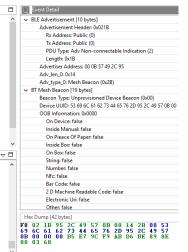
网关构建块: 网络协处理器 (NCP)

- 网络协处理器(NCP)架构
 - 蓝牙堆栈在Blue Gecko SoC上运行
 - 通过UART I / F提供蓝牙API
 - 应用程序在单独的MCU上运行
- 主机API
 - 主机API与SoC API 100%相同
 - 提供源代码并实现BGAPI串行协议解析器和API
 - SDK中提供的各种主机示例应用程序
- NCP功能
 - AES-128加密UART通信
 - 具有RTS / CTS的4线UART
 - 1个GPIO用于EM2低功耗管理(可选)
 - 1个GPIO在蓝牙事件中唤醒主机(可选)
 - 通过GPIO引脚的1-3x 802.11共存接口
 - 可以使用自定义API扩展NCP
- ■固件升级
 - 通过UART安全更新固件

网关构建模块: 802.11 共存

- 802.11 co-ex改善了同位置无线的电性能
 - 在Silicon Labs EFR32和常见802.11无线电之间 工作
 - 无线电使用1至3个GPIO信号共享状态信息
 - 用于避免或优先考虑同时进行的无线电传输
 - 对于要求高占空比RX的蓝牙mesh结构尤其 重要


蓝牙的最佳开发工具


- WSTK: 开发套件,可以通过以太网连接以构建和测试大型网状网络
- 网络分析仪:从一台PC捕获并解码来自网络中每个节点的所有蓝牙流量
- Energy Profiler:对节点能耗进行运行时分析,以优化电池寿命

网络分析仪

- 网络分析仪捕获并解码蓝牙LE和mesh数据
 - 轻松了解网络流量
 - 调试连接或协议问题
- 通过EFR32上的专用PTI接口接收数据包
 - PTI准确捕获设备发送或接收的内容
 - 蓝牙嗅探器仅捕获其听到的内容
- 直接从WSTK的USB或以太网捕获
 - 从一台PC实时捕获多个以太网联网的WSTK
 - 无需位于网络中所有设备的范围内

谢谢! Q&As

CN.SILABS.COM/WIRELESS/BLUETOOTH

