

2020全国大学生电子设计竞赛 直播公开课

王新怀

西安电子科技大学

2020.4.19

全国电子设计竞赛培训与信号通信类题目解析

陕西省电源学会副理事长 全国电赛校聘教练组组长 王新怀

2020.4.19

景景

西电电子设计竞赛组织培训

电子设计竞赛赛题方向与准备

信号通信类赛题解析与经验分享

赛题分析

(1) 仪器仪表方向:

- № 第一届(1994年)全国大学生电子设计竞赛题目

 - 🗅 题目二 多路数据采集系统
- № 第二届(1995年)全国大学生电子设计竞赛题目
 - 📭 题目一 实用低频功率放大器
 - 🗅 题目二 实用信号源的设计和制作
 - 📭 题目三 简易无线电遥控系统
 - 🗅 题目四 简易电阻、电容和电感测试仪
- № 第三届(1997年)全国大学生电子设计竞赛题目
 - DA题 直流稳定电源
 - A B题 简易数字频率计
 - D C题 水温控制系统
 - D题 调幅广播收音机*
- № 第四届(1999年)全国大学生电子设计竞赛题目
 - № △题测量放大器
 - ▶ B题 数字式工频有效值多用表
 - > c题 频率特性测试仪
 - D题 短波调频接收机
 - E题数字化语音存储与回放系统
- 第五届(2001年)全国大学生电子设计竞赛题目
 - ▶ A题波形发生器
 - > B题 简易数字存储示波器
 - D c题 自动往返电动小汽车
 - D题高效率音频功率放大器
 - ▶ E题 数据采集与传输系统

- 📭 F题 调频收音机
- 📭 第六届(2003年)全国大学生电子设计竞赛题目
 - ▶ 电压控制LC振荡器(A题)
 - № 常帯放大器 (B题)
 - ▶ 低频数字式相位测量仪(c题)
 - A 简易逻辑分析仪(D题)
 - 以 简易智能电动车(E题)
 - № 液体点滴速度监控装置(F题)
- 📭 第七届(2005年)全国大学生电子设计竞赛试题
 - □ 正弦信号发生器(A题)
 - ▲ 集成运放参数测试仪(B题)
 - 🗅 简易频谱分析仪 (c题)
 - D 单工无线呼叫系统(D题)
 - ▶ 悬挂运动控制系统(E题)
 - ▶ 数控直流电流源(F题)
- ▶ 三相正弦波变频电源(G题)
- □ 第八届(2007年)全国大学生电子设计竞赛试题
 - ▶ 音频信号分析仪(A题)
 - 📭 无线识别装置(B题)
 - 📭 数字示波器(c题)
 - 📭 程控滤波器(D题)
 - 📭 开关稳压电源(E题)
 - <u>📭</u> 电动车跷跷板(F题)
 - 🗅 积分式直流数字电压表(g题)
 - № 信号发生器(H题)
 - 📭 可控放大器 (I题)
 - 🕟 电动车跷跷板 ()题)

l....

赛题分析

第九届(**2009**年)全国大学生电子设计竞赛题目

■ A题--光伏并网发电模拟装置. doc

🕎 B题--声音导引系统. doc

哩️C题--宽带直流放大器.doc

🕎 D题--无线环境监测模拟装置. doc

ლ️E题--电能收集充电器.doc

■ P题--数字幅频均衡的功率放大器.doc

■ G题--低频功率放大器.doc

∰H题--LED点阵书写显示屏.doc

ლ I题--模拟路灯控制系统. doc

第十届(**2011**年)全国大学生电子设计竞赛题目

A开关电源模块并联供电系统

B 基于自由摆平板控制系统

C智能小车

D LC谐振放大器

E 简易数字信号传输性能分析仪

F帆板转角控制系统

G简易自动电阻测试仪

第十一届(2013年)全国大学生电子设计竞赛题目

A单相 AC-DC 变换电路

B四旋翼自主飞行器

C简易旋转倒立摆及控制装置

D 射频宽带放大器

L 简易频率特性测试仪

F 红外光通信装置

G 手写绘图板

K直流稳压电源及漏电保护装置

L简易照明线路探测仪

第十二届(2015年)全国大学生电子设计竞赛题目

(A题) 双向DC-DC变换器

(B题) 风力摆控制系统

(C题) 多旋翼自主飞行器

(D题) 增益可控射频放大器

(E题) 80MHz-100MHz频谱分析仪

(F题) 数字频率计

(G题)短距视频信号无线通信网络

(H题) LED闪光灯电源

(I题) 风板控制装置

(J题)小球滚动控制系统

赛题分析

第十三届(2017年)

全国大学生电子设计竞赛题目

(A题)微电网模拟系统

(B题)滚球控制系统

(C题) 四旋翼自主飞行器探测跟踪系统

(E题) 自适应滤波器

(F题) 调幅信号处理实验电路

(G题) 短距视频信号无线通信网络

(H题)远程幅频特性测试装置

(I题) 可见光室内定位装置

(K题)单相用电器分析检测装置

(L题)自动泊车系统

(M题) 管道内钢珠运动测量装置

(O题) 直流电动机运动测速装置

(P题) 简易水情检测系统

第十四届(2019年)

全国大学生电子设计竞赛题目

(A题) 电动小车动态无线充电系统

(B题) 巡线机器人

(C题) 线路负载及故障检测装置

(D题) 简易电路特性测试仪

(E题)基于互联网的信号传输系统

(F题) 纸张计数显示装置

(G题)双路语音同传的无线收发系统

(H题) 模拟电磁曲射炮

(I题) LED线阵显示装置

(J题) 模拟电磁曲射炮

(K题) 简易多功能液体容器

(1) 仪器仪表方向: 仪器仪表方向训练重点:

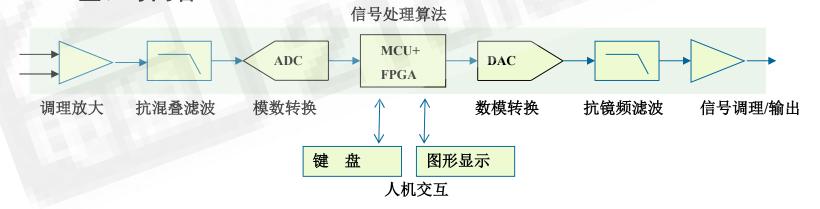
内容:包含信号产生、采集、存储、分析、处理、显示、控制等信号处理环

节中的大部分或全部。

类型:分为时域分析处理和频域分析处理两大类。

难点:强调速度、处理能力、显示性能等。需要通过构建新技术硬件平台及

运用信号处理算法来实现。系统中的部分任务需要在训练阶段完成。


训练: DDS任意信号产生、高速/宽带模拟电路、滤波器、高速ADC/DAC采样与

回放、高速数据存储(FIF0)、算法(FFT、卷积、相关、数字滤波

等)、显示技术(LCD、绘图、实时曲线等)、强实时性并发多任务软

件设计、FPGA/CPLD与单片机的接口、仪器仪表原理、各类电参数测

量、等内容。

(2) 电力电子方向:

- № 第一届(1994年)全国大学生电子设计竞赛题目
 - 题目一 简易数控直流电源
- ┗┗ 题目二 多路数据采集系统
- 🕟 第二届(1995年)全国大学生电子设计竞赛题目
 - 📭 题目一 实用低频功率放大器
 - 📭 题目二 实用信号源的设计和制作
 - 📭 题目三 简易无线电遥控系统
 - 📭 题目四 简易电阻、电容和电感测试仪
- № 第三届(1997年)全国大学生电子设计竞赛题目
- □ A题 直流稳定电源
- ▶ B题 简易数字频率计
- Da c题 水温控制系统
- D题 调幅广播收音机*
- 第四届(1999年)全国大学生电子设计竞赛题目
 - DA A题测量放大器
 - D B题 数字式工频有效值多用表
 - D c题 频率特性测试仪
 - D题 短波调频接收机
 - □ E题数字化语音存储与回放系统
- 📭 第五届(2001年)全国大学生电子设计竞赛题目
- DA A题波形发生器
- D B 题 简易数字存储示波器
- D c题 自动往返电动小汽车
- D题高效率音频功率放大器
- D E题 数据采集与传输系统

- 📭 F题 调频收音机
- 📭 第六届(2003年)全国大学生电子设计竞赛题目
 - 📭 电压控制LC振荡器(A题)
 - 📭 宽带放大器(B题)
- <mark>[2] 低频数字式相位测量仪(c题)</mark>
- □ 简易逻辑分析仪(p题)
- № 简易智能电动车 (E题)
- ▶ 液体点滴速度监控装置(F题)
- 第七届(2005年)全国大学生电子设计竞赛试题
 - ▶ 正弦信号发生器(A题)
 - ▶ 集成运放参数测试仪(B题)
 - □ 简易频谱分析仪(c题)
 - ▶ 単工无线呼叫系统(p题)
 - ▶ 悬排运动控制系统(E题)
 - > 数控直流电流源(F题)
 - > 三相正弦波变频电源(G题)
- □ 第八届(2007年)全国大学生电子设计竞赛试题
 - ▶ 音频信号分析仪(A题)
 - 📭 无线识别装置(B题)
 - 📭 数字示波器(c题)
 - <u>虺 程控滤波器(n题)</u>
 - 🥦 开关稳压电源(E题)
 - 📭 电动车跷跷板(F题)
 - 📭 积分式直流数字电压表(G题)
 - 📭 信号发生器(H题)
 - 📭 可控放大器(I题)
 - 📭 电动车跷跷板()题)

8/pp

第九届(**2009**年)全国大学生电子设计竞赛题目

- ໜ<mark> A题--光伏并网发电模拟装置</mark> doc
- 🕎 B题--声音导引系统. doc
- 型 C题--宽带直流放大器. doc
- ლ️D题--无线环境监测模拟装置. doc
- ლ<mark>E题--电能收集充电器.doc</mark>
- F题--数字幅频均衡的功率放大器.doc
- G题--低频功率放大器. doc
- ლ️H题--LED点阵书写显示屏.doc
- I题--模拟路灯控制系统. doc

第十届(**2011**年)全国大学生电子设计竞赛题目

A开关电源模块并联供电系统

- B基于自由摆平板控制系统
- C智能小车
- D LC谐振放大器
- E简易数字信号传输性能分析仪
- F帆板转角控制系统
- G简易自动电阻测试仪

第十一届(**2013**年)全国大学生 电子设计竞赛题目

A单相 AC-DC 变换电路

- B四旋翼自主飞行器
- C简易旋转倒立摆及控制装置
- D 射频宽带放大器
- E 简易频率特性测试仪
- F红外光通信装置
- G 手写绘图板

K直流稳压电源及漏电保护装置

L简易照明线路探测仪

第十二届(**2015**年)全国大学生电子设计竞赛题目

(A题)双向DC-DC变换器

- (B题) 风力摆控制系统
- (C题) 多旋翼自主飞行器
- (D题) 增益可控射频放大器
- (E题) 80MHz-100MHz频谱分析仪
- (F题)数字频率计
- (G题)短距视频信号无线通信网络
- (H题) LED闪光灯电源
- (I题)风板控制装置
- (J题) 小球滚动控制系统

第十三届(2017年)

全国大学生电子设计竞赛题目

(A题)微电网模拟系统

(B题)滚球控制系统

(C题) 四旋翼自主飞行器探测跟踪系统

(E题) 自适应滤波器

(F题) 调幅信号处理实验电路

(G题) 短距视频信号无线通信网络

(H题)远程幅频特性测试装置

(I题) 可见光室内定位装置

(K题)单相用电器分析检测装置

(L题)自动泊车系统

(M题) 管道内钢珠运动测量装置

(O题) 直流电动机运动测速装置

(P题) 简易水情检测系统

第十四届(2019年)

全国大学生电子设计竞赛题目

(A题)电动小车动态无线充电系统

(B题) 巡线机器人

(C题)线路负载及故障检测装置

(D题) 简易电路特性测试仪

(E题) 基于互联网的信号传输系统

(F题) 纸张计数显示装置

(G题)双路语音同传的无线收发系统

(H题) 模拟电磁曲射炮

(I题)LED线阵显示装置

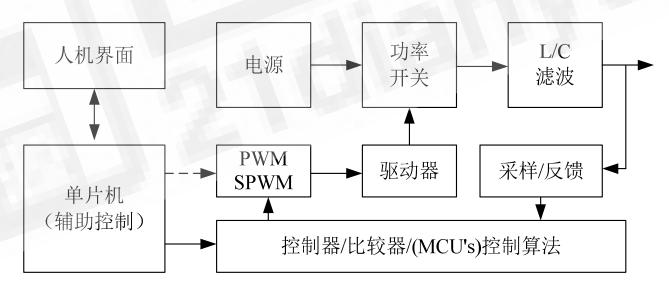
(J题)模拟电磁曲射炮

(K题)简易多功能液体容器

电力电子方向训练重点:

内容:大电流、大功率、三相电、斩波、DC-AC逆变、DC-DC开关电源、变频驱动、

Class-D功放、光伏发电、并网、MPPT算法,等电力电子领域的新技术。


类型:分为传统技术型(重在指标)和新技术型(重在新设计思路)两大类。

难点:大电流、高效率要求。实验过程中烧毁事故率很高!

训练: 常见DC-DC开关拓扑(Buck/Boost/Backboost/Flyback)、常见PWM控制器(电

流/电压控制、单周期关断控制、双环反馈控制)、闭环反馈与稳定性(补偿回路、稳定性与瞬态响应)、功率开关器件(MOSFET/IGBT)及驱动(半桥/全桥/浮栅)、SPWM正弦波逆变、磁性元件基础知识(各种铁氧体、变压器和电感

设计及制作、磁隙调整等动手能力)、MPPT控制算法及拓扑、同步整流...。

(3) 自动控制方向:

- № 第一届(1994年)全国大学生电子设计竞赛题目

 - 📭 题目二 多路数据采集系统
- 🕟 第二届(1995年)全国大学生电子设计竞赛题目
 - 顶 题目一 实用低频功率放大器
 - 📭 题目二 实用信号源的设计和制作
 - 📭 题目三 简易无线电遥控系统
 - 📭 题目四 简易电阻、电容和电感测试仪
- № 第三届(1997年)全国大学生电子设计竞赛题目
 - ▶ A题 直流稳定电源
 - D B B 简易数字频率计
 - ♪ c题 水温控制系统
 - D题 调幅广播收音机*
- D 第四届(1999年)全国大学生电子设计竞赛题目
 - DA A题测量放大器
 - D B题 数字式工频有效值多用表
 - D c题 频率特性测试仪
 - D题 短波调频接收机
 - D E题数字化语音存储与回放系统
- 📭 第五届(2001年)全国大学生电子设计竞赛题目
- DA A题波形发生器
- 📭 B题 简易数字存储示波器
- D c题 自动往返电动小汽车
- D D题高效率音频功率放大器
- 📭 E题 数据采集与传输系统

- 📭 F题 调频收音机
- 📭 第六届(2003年)全国大学生电子设计竞赛题目
 - 📭 电压控制LC振荡器(A题)
 - 📭 宽带放大器(B题)
- ▶ 低频数字式相位测量仪(c题)
- ▶ 简易逻辑分析仪(p题)
- △ 简易智能电动车 (E题)
- ▶ 液体占滴速度监控装置(F题)
- 📭 第七届(2005年)全国大学生电子设计竞赛试题
 - ▶ 正弦信号发生器(A题)
 - 📭 集成运放参数测试仪(B题)
 - ▶ 简易频谱分析仪(c题)
 - ▶ 単工无线呼叫系统(D题)
 - 🔁 悬挂运动控制系统(E题)
 - 🔼 数控直流电流源(F题)
 - 📭 三相正弦波变频电源(G题)
- ▶ 第八届(2007年)全国大学生电子设计竞赛试题
 - ▶ 音频信号分析仪(A题)
 - 📭 无线识别装置(B题)
 - 📭 数字示波器(c题)
 - 📭 程控滤波器(D题)
 - <u>📭 开关稳压电源(E题)</u>
 - 🔁 电动车跷跷板(F题)
 - ▶ 积分式直流数字电压表(G题)
 - 📭 信号发生器(H题)
 - 📭 可控放大器(I题)
 - 🔁 电动车跷跷板 ()题)

第九届(**2009**年)全国大学生电子设计竞赛题目

- A题--光伏并网发电模拟装置. doc
- B题--声音导引系统. doc
- C题--宽带直流放大器. doc
- 🕎 D题--无线环境监测模拟装置. doc
- **■** E题--电能收集充电器. doc
- P题--数字幅频均衡的功率放大器.doc
- G题--低频功率放大器. doc
- ➡️H题--LED点阵书写显示屏.doc
- 型 I----模拟路灯控制系统. doc

第十届(**2011**年)全国大学生电子设计竞赛题目

- A开关电源模块并联供电系统
- B 基于自由摆平板控制系统
- C智能小车
- D LC谐振放大器
- E 简易数字信号传输性能分析仪
- F帆板转角控制系统
- G简易自动电阻测试仪

第十一届(**2013**年)全国大学生 电子设计竞赛题目

- A单相 AC-DC 变换电路
- B 四旋翼自主飞行器
- C简易旋转倒立摆及控制装置
- D 射频宽带放大器
- E简易频率特性测试仪
- F红外光通信装置
- G手写绘图板
- K直流稳压电源及漏电保护装置
- L简易照明线路探测仪

第十二届(**2015**年)全国大学生电子 设计竞赛题目

(A题)双向DC-DC变换器

- (B题) 风力摆控制系统
- (C题)多旋翼自主飞行器
- (D题) 增益可控射频放大器
- (E题) 80MHz-100MHz频谱分析仪
- (F题) 数字频率计
- (G题) 短距视频信号无线通信网络
- (H题) LED闪光灯电源
- (I题)风板控制装置
- (J题) 小球滚动控制系统

第十三届(2017年)

全国大学生电子设计竞赛题目

(A题)微电网模拟系统

(B题) 滚球控制系统

(C题)四旋翼自主飞行器探测跟踪系统

(L尟)目迈应滤波裔

(F题)调幅信号处理实验电路

(G题) 短距视频信号无线通信网络

(H题) 远程幅频特性测试装置

(I题) 可见光室内定位装置

(K题)单相用电器分析检测装置

(L题)目动汩车糸统

(M题)管道内钢珠运动测量装置

(O题)直流电动机运动测速装置

(P题)简易水情检测系统

第十四届(2019年)

全国大学生电子设计竞赛题目

(A题) 电动小车动态无线充电系统

(B题) 巛线机器人

(C题) 线路负载及故障检测装置

(D题) 简易电路特性测试仪

(E题) 基于互联网的信号传输系统

(F题) 纸张计数显示装置

(G题) 双路语音同传的无线收发系统

(H题)模拟电磁曲射炮

(I题)LED线阵显示装置

(J题)模拟电磁曲射炮

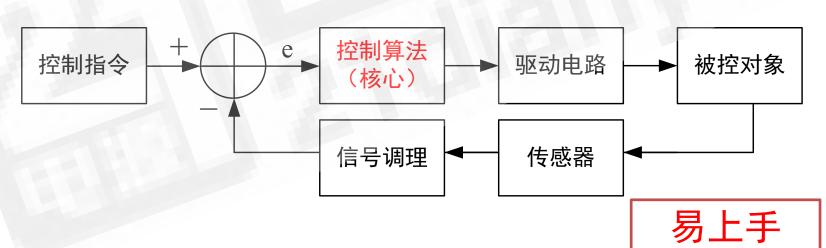
(K题)简易多功能液体容器

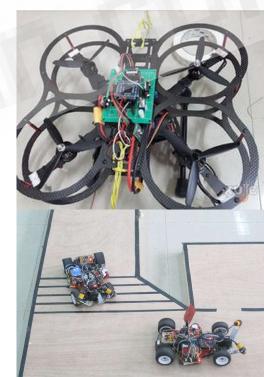
自动控制方向训练重点:

内容: 涉及非电路系统, 要求被控对象 "稳"、"快"、"准"地按照既定

要求运动。

类型:分为动作型(完成预定难度动作)和指标型(控制指标)两大类。


难点:构建稳定的反馈,以及设计控制算法是最大难点(要求基础功底),


涉及机械、物理等非电专业知识,动手能力挑战。【运气成分】

训练:控制算法(PID及其改进)、传感器(速度、温度、位移、倾角、红外

光电等)、反馈稳定性与控制系统调试技能、电机驱动(步进、直流、

角度/速度舵机)、PWM+功率开关及驱动。

(3)信号通信类题目

- 🕟 第一届(1994年)全国大学生电子设计竞赛题目
 - 🦣 题目一 简易数控直流电源
 - 🗅 题目二 多路数据采集系统
- 📭 第二届(1995年)全国大学生电子设计竞赛题目
 - 🔁 题目一 实用低频功率放大器
 - 🗅 题目二 实用信号源的设计和制作
 - 🗅 题目三 简易无线电遥控系统
 - 📭 题目四 简易电阻、电容和电感测试仪
- № 第三届(1997年)全国大学生电子设计竞赛题目
 - 📭 A题 直流稳定电源
 - 🃭 B题 简易数字频率计
 - № c題 水温控制系统
 - D题 调幅广播收音机*
- 第四届(1999年)全国大学生电子设计竞赛题目
 - □ A题测量放大器
 - D B题 数字式工频有效值多用表
 - Dac题 频率特性测试仪
 - ♪ D题 短波调频接收机
 - DE E题数字化语音存储与回放系统
- 第五届(2001年)全国大学生电子设计竞赛题目
 - D A题波形发生器

 - ○题 自动往返申动小汽车

 - 📭 E题 数据采集与传输系统

└№ F题 调频收音机

- 🕟 第六届(2003年)全国大学生电子设计竞赛题目
 - A 电压控制LC振荡器(A题)
 - 📭 宽带放大器 (B题)
 - ▶ 低频数字式相位测量仪(c题)
 - □ 简易逻辑分析仪(p题)
 - □ 简易智能电动车(E题)
 - № 液体点滴速度监控装置 (F题)
- D 第七届(2005年)全国大学生电子设计竞赛试题
 - □ 正弦信号发生器(A题)
 - ▶ 集成运放参数测试仪(B题)
 - □ 简易频谱分析仪(c题)
 - 💪 甲工尤线呼叫系统(D题)
 - 🔼 悬挂运动控制系统(E题)
 - 📭 数控直流电流源(F题)
 - ▶ 三相正弦波变频电源(G题)
- 📭 第八届(2007年)全国大学生电子设计竞赛试题
 - 🔼 音频信号分析仪(A题)
 - 入 无线识别装置 (B题)
 - ▶数字示波器 (c题)
 - 🧎 程控滤波器(D题)
 - 📭 开关稳压电源(E题)
 - 📭 电动车跷跷板(F题)
 - 📭 积分式直流数字电压表(G题)
 - 🏃 信号发生器(H题)
 - 可控放大器(I题)
 - 📭 电动车跷跷板()题)

第九届(**2009**年)全国大学生电子设计竞赛题目

- A题--光伏并网发电模拟装置. doc
- B题--声音导引系统. doc
- C颞-- 寓带直流放大器, doc
- ₩mm期==无线环境监测模拟装置 Jac
- 唑 E题--电能收集充电器. doc
- 型 F题--数字幅频均衡的功率放大器.doc
- 唧☆颗--低频功率的大器 doc
- 哩️H题--LED点阵书写显示屏.doc
- I题--模拟路灯控制系统. doc

第十届(**2011**年)全国大学生电子设计竞赛题目

- A开关电源模块并联供电系统
- B 基于自由摆平板控制系统
- C智能小车
- D LC谐振放大器
- E 简易数字信号传输性能分析仪
- F帆板转角控制系统
- G 简易自动电阻测试仪

信号通信类题目

第十一届(**2013**年)全国大学生 电子设计竞赛题目

A单相 AC-DC 变换电路

B 四旋翼自主飞行器

C简易旋转倒立摆及控制装置

D 射频宽带放大器

E 简易频率特性测试仪

F 红外光通信装置

G 手写绘图板

K直流稳压电源及漏电保护装置

L简易照明线路探测仪

第十二届(**2015**年)全国大学生电子 设计竞赛题目

(A题) 双向DC-DC变换器

(B题) 风力摆控制系统

(C题) 多旋翼自主飞行器

D题)增益可控射频放大器

(E题) 80MHz-100MHz频谱分析()

(F题) 数字频率计

(G题) 短距视频信号无线诵信网络

(H题) LED闪光灯电源

(I题) 风板控制装置

(J题)小球滚动控制系统

第十三届(2017年)

全国大学生电子设计竞赛题目

(A题) 微电网模拟系统

(B题)滚球控制系统

(C题) 四旋翼自主飞行器探测跟踪系统

(L尟)目亞凶滤波裔

(F题)调幅信号处理实验电路

(G题) 短距视频信号无线通信网络

(H题) 远程幅频特性测试装置

(I题)可见光室内定位装置

(K题)单相用电器分析检测装置

(L题)自动泊车系统

(M题)管道内钢珠运动测量装置

(O题) 直流电动机运动测速装置

(P题)简易水情检测系统

第十四届(2019年)

全国大学生电子设计竞赛题目

(A题)电动小车动态无线充电系统

(B题) 巡线机器人

(C题) 线路负载及故障检测装置

(D题) 简易电路特性测试仪

(E题) 基于互联网的信号传输系统

「一型ノ纸」が以上の表目

(G题)双路语音同传的无线收发系统

(H题)模拟电磁曲射炮

(I题) LED线阵显示装置

(J题)模拟电磁曲射炮

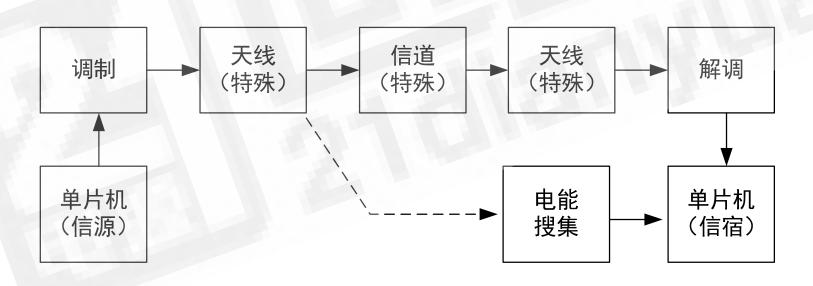
(K题)简易多功能液体容器

信号通信类题目基本考点总结

考点	1994	1995	1997	1999	2001	2003	2005	2007	2009	2011	2013	2015	2017	合计次数
点对点通信	1	1	1	1	2			1		1	1	1		10
网络通信							1		1		1	1		4
无线通信		1	1	1	1		1	1	1		1	1		9
有线通信	1				1					1				3
模拟通信			1	1	1	1	1							5
数字通信	1	1			1		1	1	1	1		1		8
接收机		1	1	1	2		1	1	1	1		1		10
发射机		1			1	1		1	1			1		5
中继器									1		1	1		2
中波			1										1	1
短波		1		1		1	2	1	1					7
超短波					1	1	Him							2
通信协议	1				1		1	1	1		1	1		7
信道复用	1						1	1	1		1		1	5
频率合成			1	1	1	1	1							5
电磁兼容		1	1	1	1		1	1	1				1	7
测试仪器					1		1			1				3

(1) 通信方向训练重点:

内容: 涉及在特殊信道上以某种调制/解调方式传递信息。


类型:可分为传统型(早期试题,公司赞助IC)和新技术型(近两届)两类。

难点:非常规的信道,非常规通信方式,无现成IC可用。

训练:调制与解调(AM、FM、ASK、FSK、DPSK、OOK)方法与电路、振荡器、

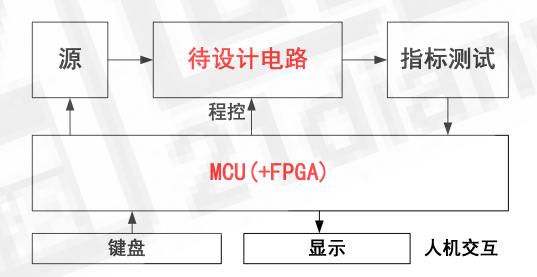
丙类放大器、谐振回路、天线与电磁场基础知识、超低功耗设计。

关注近年来的新技术: RFID (携能传输)、无线自组网协议、物联网、超高频

(2) 信号电路方向训练重点:

内容:偏重概念和指标。涉及到各类经典单元模块电路,及其基本概念、基本

原理和新实现方法、性能指标测试方法等。


类型:分为功能型(重在新方法)和指标型(重在新设计思路)两大类。

难点:特别强调指标,通常通用IC是难以完成的。

训练: (程控)放大器、(程控)滤波器、振荡器、DDS任意信号产生、基本模

拟调理电路、电性能指标测试(阻抗、相位、带宽...)、开拓设计思路

等。

>信号与通信类赛题涉及到的基本课程和知识面:

电路分析基础;信号与系统;模拟电子技术基础;数字电子技术基础;高频电子线路;电磁场与电磁波、射频/微波电路、微波技术与天线;通信原理;天线原理;微机原理;单片机原理及其应用;可编程逻辑器件原理及其应用;EDA技术及其应用;无线接收与发射技术;

此外还包含各种编程语言: C语言; Python语言; Verilog等硬件描述语言;

以及电子系统综合设计等。

>信号与通信类赛题涉及的知识点:

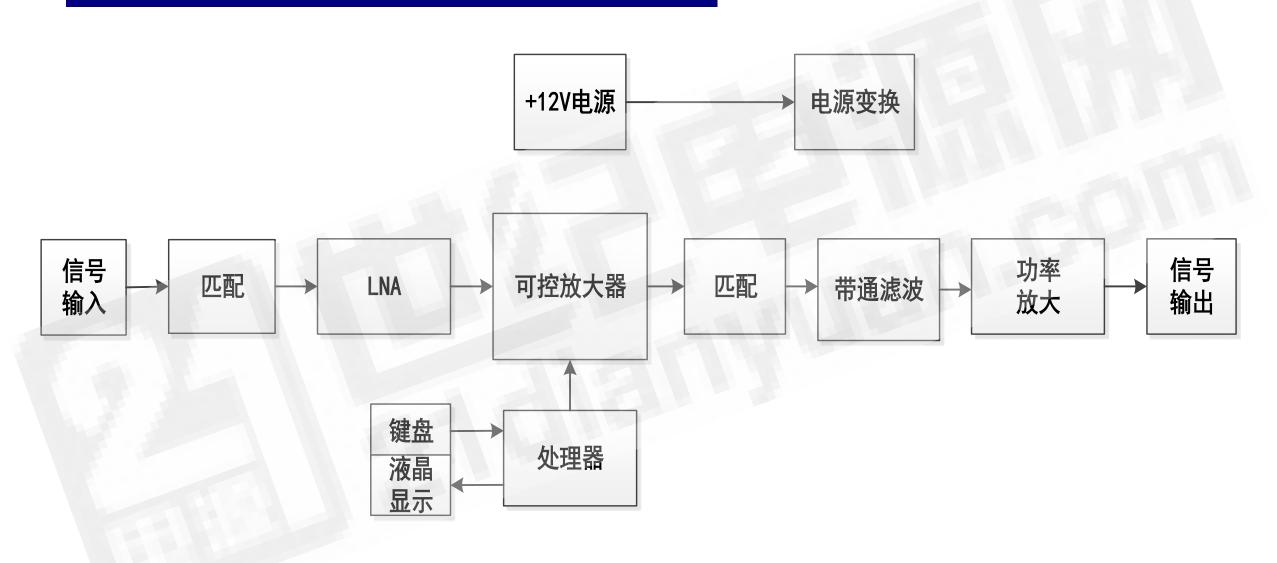
如:模拟电路有运放比例放大器、相加器、相减器、积分器、微分 器、有源滤波器、无源滤波器、差动放大器、功率放大器、电流源、负 反馈放大器等电路,还包括非线性失真、线性失真、饱和失真、截止失 真、相位失真、幅度失真、共模抑制、阻抗匹配、低频响应、高频响应 等概念; 高频电路有高频放大器、功率放大器、振荡器(包括压控振荡 器VCO等)、模拟乘法器、混频器、倍频器、限幅器、自动增益控制电 路(AGC)、自动频率控制电路(AFC)、自动相位控制电路(APC) 、调制与解调器(含AM、FM、PM和数字信号调制与解调器)等器件 ,包括有模拟与数字频率合成技术、功率合成技术、宽频带技术、相关 处理、反馈控制等技术,还涉及发射机、接收机、频率源等组件设计方 法。

信号通信赛题准备-应具备的工程能力

- >了解射频接插件、电缆、磁芯材料、屏蔽等知识;
- > 具有绘制射频印刷板能力并有初步的电磁兼容知识;
- ▶ 掌握一些射频CAD软件(ADS、HFSS、ANSOFT), 能完成部件设计;
- > 掌握收发信机的总体设计制作能力;
- > 掌握先进射频仪器使用方法;
- 〉掌握通信电源的设计能力及电磁兼容知识
- 〉掌握一般常用的通信协议及信道接入及复用知识
- ▶掌握FPGA、DSP基本知识;
- >具有高速数字信号处理的能力;

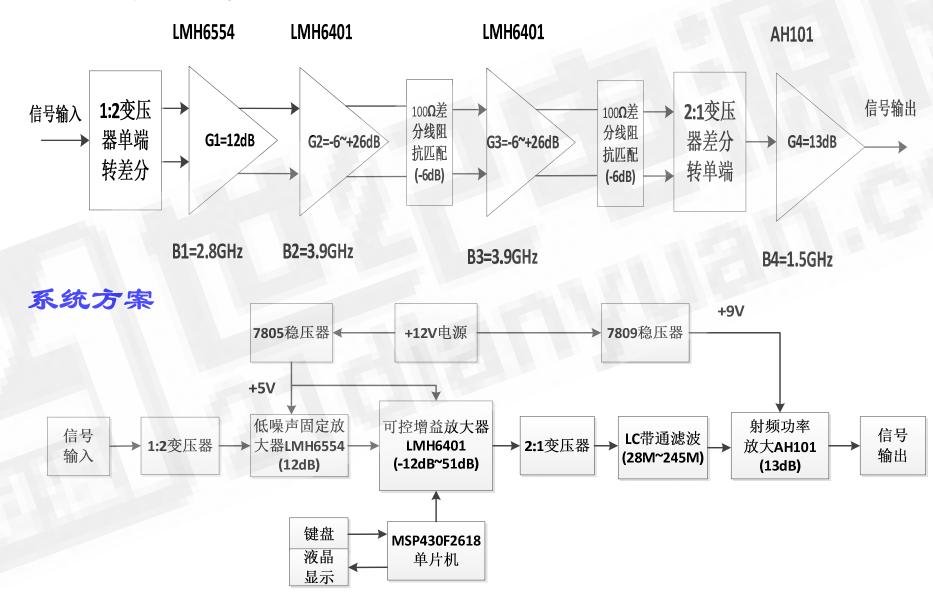
2015年信号通信题目解析

增益可控射频放大器 (D题)

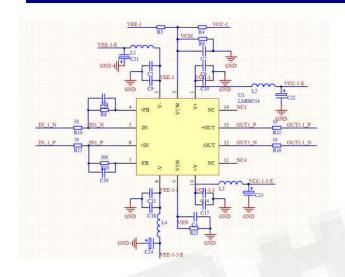

- 一、任务
 - 设计并制作一个增益可控射频放大器
- 二、要求
- 1. 基本要求
- (1) 放大器的 电压增益 AV≥40dB,输入电压有效值,输入电压有效值,输入电压有效值,输入电压有效值 Vi≤20 mV,其输入阻抗、输出阻抗均为50,负载电阻负载电阻50,且输出电压输出电压有效值 Vo≥2V,波形无明显失真;
- (2) 在75MHz ~108 MHz 频率范围内增益波 动不大于 2dB;
- (3) -3dB的通频带不窄于 $60MHz \sim 130 MHz$,即 $f_L \leq 60MHz \wedge f_H \geq 130 MHz$;
- (4) 实现 A_V增益 步进 控制, 增益控制 范围 为 12 dB ~40dB, 增益控制 步长为 4dB,增益 绝对 误差不大于 误差不大于 2dB,并能显示设定 的增益 值。

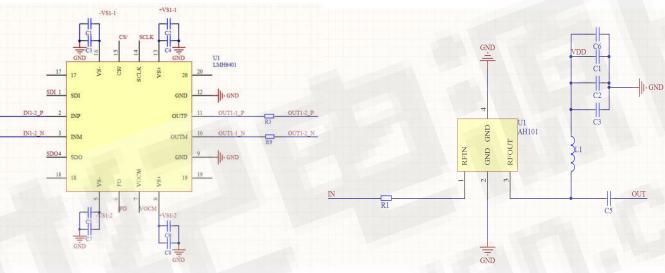
2. 发挥部分

- (1) 放大器的电压增益)放大器的电压增益 $A_V \geqslant 52 \; dB$,增益控制扩展至 增益控制扩展至 52dB,增益控制 步长 不 变,输入电压有效值 $V_i \leqslant 5 \, mV$,其输入阻抗,其输入阻抗、输出阻抗 均为 50Ω ,负载 电阻 50Ω ,且输出电压 有效值 $V_0 \geqslant 2V$,波形无明显失真; 波形无明显失真;
- (2) 在50MHz ~160MHz 频率范围内增益 波动不大于 2dB;
- (3) -3dB的通频带不窄于40 MHz \sim 200 MHz , 即 f_L ≤40 MHz 和 f_H ≥ 200 MHz ;
- (4) 电压增益 AV≥52 dB, 当输入信号频率f≤20MHz 或输入信号频率 f≥ 270MHz 时, 实测电压增益 AV均不大于20 dB;
 - (5) 其他。

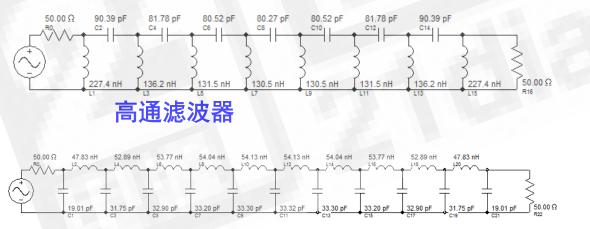


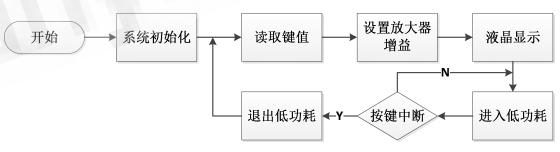
题目方案





放大器链路组成

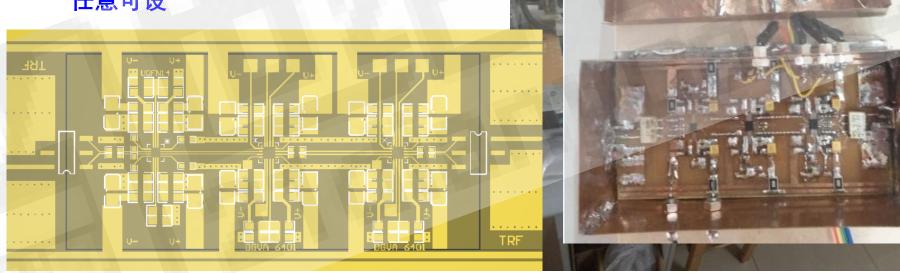




低噪声固定增益放大电路

可控增益放大电路

后级功率放大电路设计


软件流程图

低通滤波器

制作过程

- 1. 程控增益放大器
- 绘制PCB, 现场制作, 同时加急投板
- 制作屏蔽盒
- 达到指标: 0[~]64dB, 以1dB为步进值 任意可设

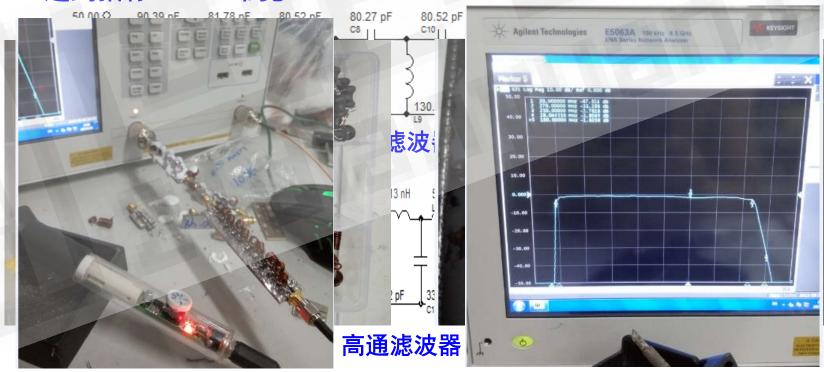
程控增益放大器PCB三维图

程控增益放大器实物图

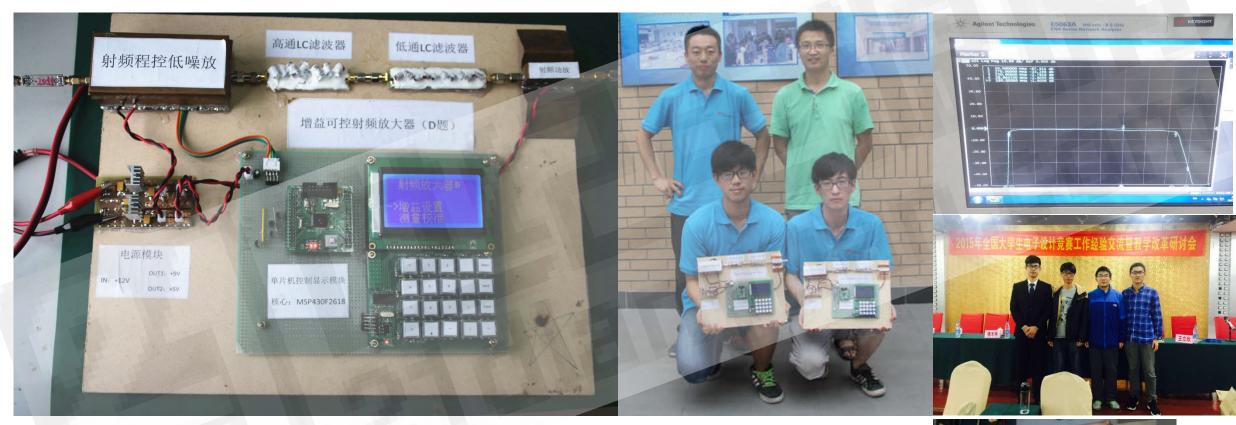
制作过程

2. 功率放大器

达到指标: 最大3.7Vrms输出

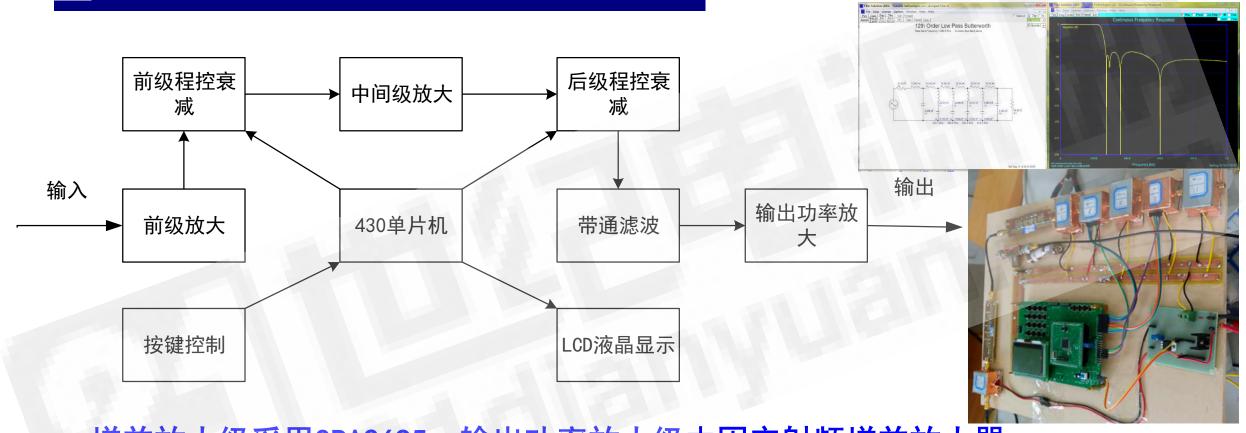

AH101 PCB版图

AH101 实物



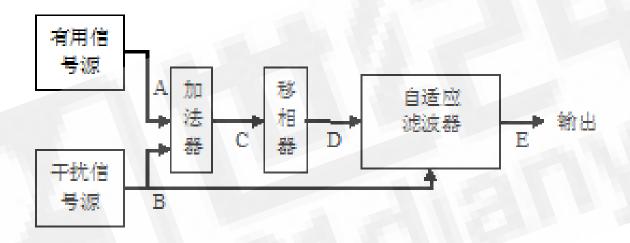
制作过程

- 3. 带通滤波器
- 利用辅助设计软件FilterSolutions综合出电路结构
- 绕制电感,制作滤波器,用矢量网络分析仪调整参数
- 达到指标: -3dB带宽28MHz~252MHz


参赛队员:郑永平、方凌、王超

指导教师: 王新怀、袁晓光、周佳社

本校另一种方案


增益放大级采用0PA2695,输出功率放大级由固定射频增益放大器THS9000构成,带通滤波为多级无源滤波器级联而成,衰减网络由HITTITE公司的HMC470LP3芯片组成,可以对输出按步进1dB衰减,通过2片级联使用,最大可达62dB衰减,该芯片由MSP430F2618的10口输出高低电平控制,并在LCD液晶上显示系统当前增益值。

2017年信号通信题目解析

自适应滤波器 (E题)

设计并制作一个自适应滤波器,用来滤除特定的干扰信号。自适应滤波器工作频率为 10kHz~100kHz。其电路应用如图1所示。

有用信号源和干扰信号源为两个独立信号源,输出信号分别为信号A和信号B,且频率不相等。自适应滤波器根据干扰信号B的特征,采用干扰抵消等方法,滤除混合信号D中的干扰信号B,以恢复有用信号A的波形,其输出为信号E。

自适应滤波器 (E题)

二、要求

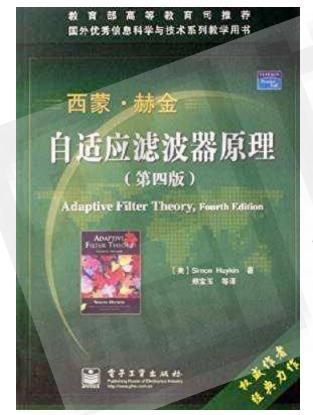
- 1. 基本要求
 - (1)设计一个加法器实现C=A+B,其中有用信号A和干扰信号B峰峰值均为1~2V,频率范围为10kHz~100kHz。预留便于测量的输入输出端口。
 - (2)设计一个移相器,在频率范围为10kHz~100kHz的各点频上,实现点频0°~180°手动连续可变相移。移相器幅度放大倍数控制在 1±0.1,移相器的相频特性不做要求。预留便于测量的输入输出端口。
 - (3)单独设计制作自适应滤波器,有两个输入端口,用于输入信号B和D。有一个输出端口,用于输出信号E。当信号A、B为正弦信号,且频率差≥100Hz时,输出信号E能够恢复信号A的波形,信号E与A的频率和幅度误差均小于10%。滤波器对信号B的幅度衰减小于1%。预留便于测量的输入输出端口。

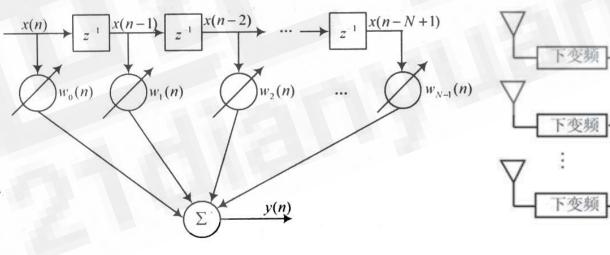
自适应滤波器 (E题)

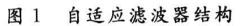
2. 发挥部分

- (1) 当信号A、B为正弦信号,且频率差≥10Hz时,自适应滤波器的输出信号E能恢复信号A的波形,信号E与A的频率和幅度误差均小于10%。滤波器对信号B的幅度衰减小于1%。
- (2) 当B信号分别为三角波和方波信号,且与A信号的频率 差大于等于10Hz时,自适应滤波器的输出信号E能恢复信号A的波形,信号E与A的频率和幅度误差均小于10%。 滤波器对信号B的幅度衰减小于1%。
- (3) 尽量减小自适应滤波器电路的响应时间,提高滤除干扰 信号的速度,响应时间不大于1秒。
- (4) 其他。

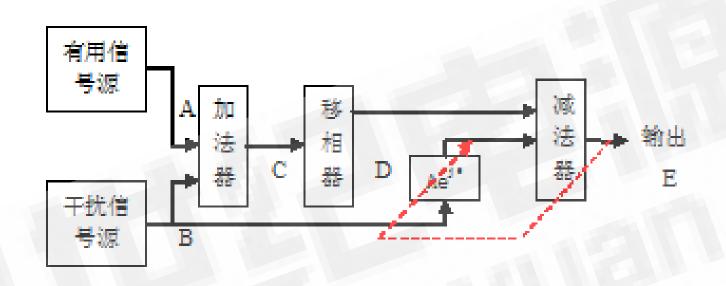
自适应滤波器 (E题)


三、说明


- 1. 自适应滤波器电路应相对独立,除规定的3个端口外,不得与移相器等存在其他通信方式。
- 2. 测试时,移相器信号相移角度可以在0°~180°手动调节。
- 3. 信号E中信号B的残余电压测试方法为:信号A、B按要求输入,滤波器正常工作后,关闭有用信号源使 U_A =0,此时测得的输出为残余电压 U_E 。滤波器对信号B的幅度衰减为 U_E/U_B 。若滤波器不能恢复信号A的波形,该指标不测量。
- 4. 滤波器电路的响应时间测试方法为:在滤波器能够正常滤除信号B的情况下,关闭两个信号源。重新加入信号B,用示波器观测E信号的电压,同时降低示波器水平扫描速度,使示波器能够观测1~2秒 E信号包络幅度的变化。测量其从加入信号B开始,至幅度衰减1%的时间即为响应时间。若滤波器不能恢复信号A的波形,该指标不测量。

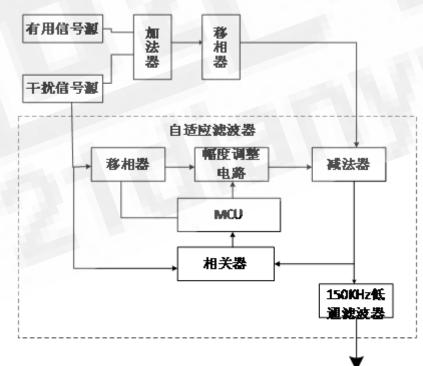

题目背景

□自适应滤波器广泛应用于通信领域的自动均衡、回波消除、天线阵波束形成,以及其他有关领域信号处理的参数识别、噪声消除、谱估计等方面。



阵列处理器

自适应滤波器的实现



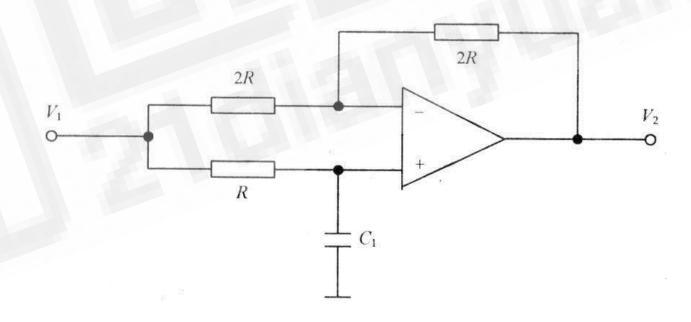
- > 具体可用模拟电子线路实现自适应滤波器或经过A/D变换用数字信号处理的方式实现自适应滤波。
- > 实测结果表明模拟方案实现的作品指标优于数字方法实现的作品。

自适应滤波器的数字实现

- □ 将经过移相器的混合信号利用模数转换器采集,利用FPGA平台实现可重构FIR滤波器以得到信号,计算输出信号与期望信号的误差均方值,然后利用得到结果重构FIR滤波器。或利用高速DSP信号处理技术实现离散维纳滤波,再经D/A输出。系统复杂,额外的噪声难以控制。
- □相关检测法:通过控制,使残差电压与干扰相关值最小。

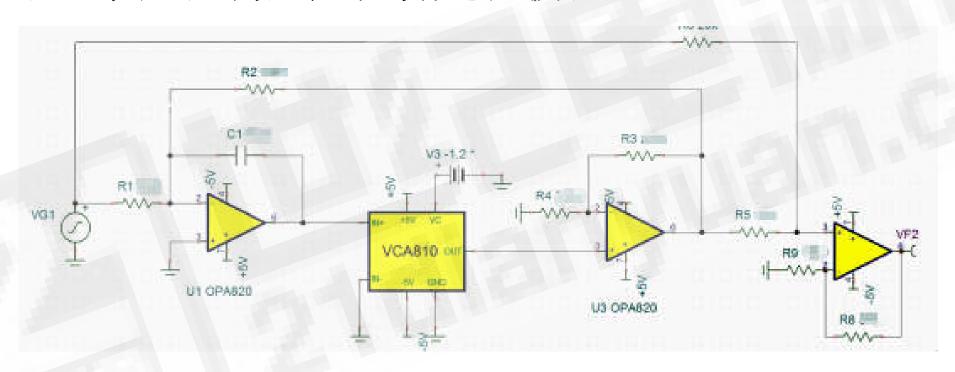
自适应滤波器的模拟实现二

□最小功率 (或RMS) 检测法:


搭建能够跟踪与前端滤波电路可相匹配的的滤波网络,利用数控移相器,完全模拟前端移相系统网络。用混合信号与通过数控移相器的干扰信号相减,利用平方律(或RMS)检波器,将其输出经过单片机反馈,直到检波器的值到最小,此时输出即可获得单频有用信号。

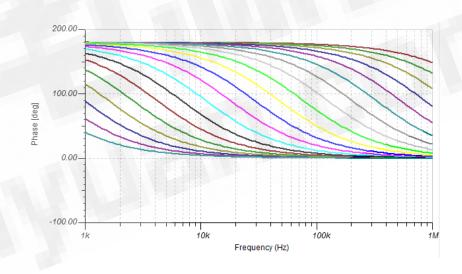
可控移相器的实现

口传统方案


采用调节电阻的方式改变相移,为了获得较为精确的相移,应尽可能减小电容的容值,单级最大相移小于 90度。为了实现题目要求的180度相移,使用三级级联来构成一个新的移相器。

可控移相器的实现

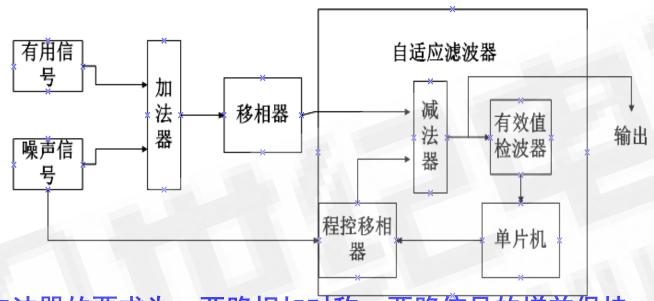
□利用可变增益放大器实现压控移相器,其中积分器与可变增益放大器构成压控低通滤波器。



可控移相器的实现

- ▶改变VCA810的控制端电压,即可改变此滤 波器的相频特性。
- >整个压控移相器的传递函数为:

$$A(j\omega) = -\frac{1 - j\omega RC}{1 + j\omega RC} = -\frac{1 + R_8/R_9}{1 + R_6/R_5} \left(\frac{A_1(0)R_6/R_5 - 1 - j\frac{\omega}{\omega_0}}{1 + j\frac{\omega}{\omega_0}} \right)$$

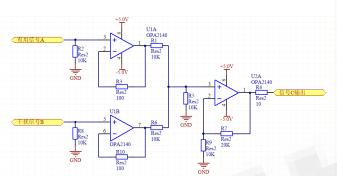

>其中要求: $\frac{1+R_g/R_g}{1+R_6/R_5}=1$ $A(0)R_6/R_5-1=1$

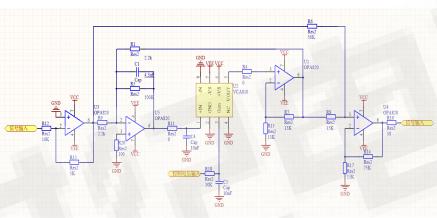
控制算法:最小均方误差准则(LMS)算法。采用可变斜率收敛最快。其他如RLS,牛顿迭代法等

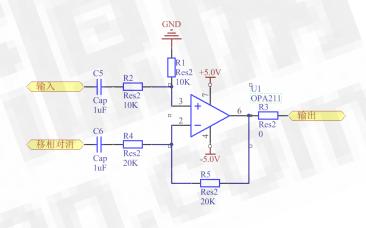
整体方案

对加法器的要求为:两路相加对称,两路信号的增益保持一致。带宽1MHz以上两输入端输入阻抗极高,使一路的通断与否对另一路不会造成影响。

对移相器模块的要求是:实现宽频带单频信号移相0°至180°。


对程控移相器模块的要求是:实现宽频带单频信号移相0°至180°。为保证有用信号中叠加的噪声可被完全对消,程控移相器的元件参数,电路布局与移相器完全一致。


对程控移相器模块的要求是: 两路相减对称, 两路信号的增益保持一致。


对有效值检波器模块的要求是:最大1V的有效值输入,线性度良好,可检测500KHz的输入信号。

硬件与软件设计

加法器电路

宽带压控移相电路图

减法器电路

图4.1 软件基本流程图

测试结果

表 5.1 "加法器测试"记录表

输入频率/KHz	10 20		40	80	100
信号 C 峰峰值/Vpp	2.01	2.00	2.00	2.00	1.99

表 5.2 "移相器测试"记录表

输入频率/KHz	10	20	40	80	100
0 度移相值	0.5	0.8	1.5	2.6	3. 5
180 度移相值	176	177	178	179	179

表 5.3 "滤波幅度"测试记录表

信号A频率/KHz	10	20	40	80	100
信号B频率/KHz	10. 1	20. 1	40. 1	80.1	99.9

信号 E 幅度/mV	999	993	989	975	941
信号 A 频率/KHz	10	20	40	80	100
信号 B 频率/KHz	10.01	20.01	40.01	80.01	100.01
信号E幅度	989	973	989	965	951

表 5.4 "残存电压"测试记录表

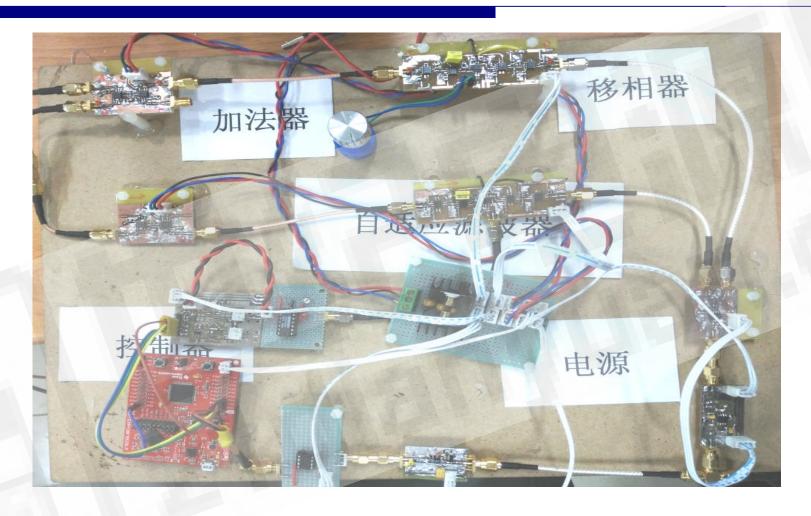
信号A频率/KHz	10	20	40	80	100
信号 B 频率/KHz	10.1	20. 1	40. 1	80.1	99. 9
信号 E 幅度/mV	3.9	6. 9	4.6	5. 7	8. 7

表 5.6 "响应时间"测试记录表

信号 A 频率/KHz	10	20	40	80	100
信号 B 频率/KHz	20	30	50	70	90
响应时间/s	0.8	0.7	0.5	0.5	0.5

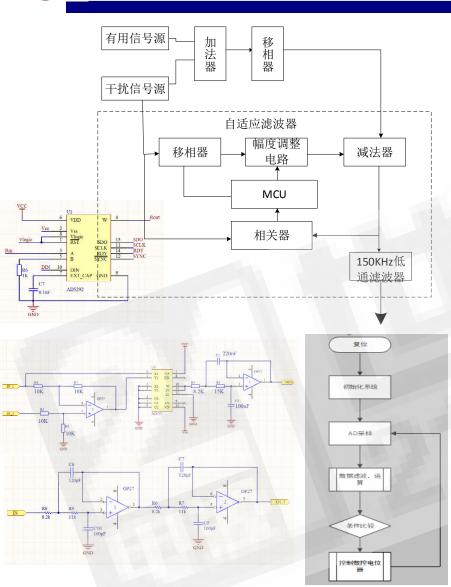
(E题)测试记录与评分表

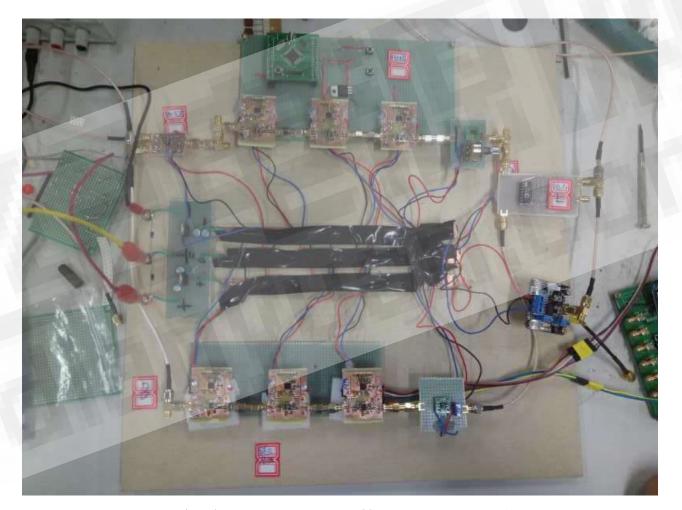
	类型	序号	测试项目	测试条件	满分	测试记录	评分	备注
		(1)	加法器实现C=A+B	A、B为正弦波 $U_{\rm PP}$ =1 V ,频率分别为90、100 k Hz	6	实现();未实现()		
			移相器实现0-180°手动相移,幅度放大倍数在1±0.1之间	C为正弦波100kHz, $U_{\text{CPP}} = 2\text{V}$	12	相移0° 相移45° 相移180° U _{DPP} = U _{DPP} =		
		(2)		CPP 2 V		V		
	#			C为正弦波10kHz, U _{CPP} = 2V	12	v v v		
	基本要求		E能恢复A的波形; 自适应滤 波器对B信号幅度衰减小于 1%。	A为正弦波90.1kHz, U_{APP} =	2	" <i>u_E≈u_A</i> "。是(); 否()		
	求	(2)		2V; B为正弦波 $90kHz$, U_{BPP} = $1V$ 。 移相器移相 45°	8	E中B的残余电压 <i>U</i> _{EPP} = mV B信号幅度衰减= %		
		(3)			2	" <i>u_E≈u_A</i> "。是();否()		
				A、B信号同上,移相器移相 180°	8	E中B的残余电压 <i>U</i> _{EPP} = mV B信号幅度衰减= %		
			合计		50			



(E题)测试记录与评分表

类型	序号	测试项目	测试条件	满分	测试记录	评分	备注
			A为正弦波 $80.01 \mathrm{kHz},\ U_{\mathrm{APP}} = 2 \mathrm{V};$ B为正弦波 $80 \mathrm{kHz},\ U_{\mathrm{BPP}} = 1 \mathrm{V}$ 。 移相器移相 45°	1	" u _E ≈ u _A "。是();否()		
	(1)	E能恢复A的波形; 自适应滤波器 对B信号幅度衰减小于1%。		4	E中B的残余电压 <i>U</i> _{EPP} = mV B信号幅度衰减= %		
		利D 旧 与闸/叉衣恢介 1 1/0。		1	" u _E ≈ u _A "。是();否()		
			A、B信号同上,移相器移相 180°	4	E中B的残余电压 <i>U</i> _{EPP} = mV B信号幅度衰减= %		
发		B信号分别为三角波、方波信号。 E能恢复A的波形;滤波器对B信 号幅度衰减小于1%。	A为正弦波 $80.01 \mathrm{kHz},\ U_{\mathrm{APP}} = 2 \mathrm{V},\ \mathrm{B为三角波} 80 \mathrm{kHz},\ U_{\mathrm{BPP}} = 1 \mathrm{V}.$ 移相器移相 45°	2	" <i>u_E≈u_A</i> "。是();否()		
发 挥 部 分				8	E中B的残余电压 <i>U</i> _{EPP} = mV B信号幅度衰减= %		
	(2)			2	" u _E ≈ u _A "。是();否()		
			A同上; B为方波 $80 \mathrm{kHz}$, $U_{\mathrm{BPP}} = 1 \mathrm{V}$ 。 移相器移相 45°	8	E 中 B 的残余电压 U_{EPP} = m V B信号幅度衰减= %		
	(3)	响应时间不大于1秒	A、B信号,移相器移相条件同上 格。	15	响应时间= 秒		
	(4)	其他		5			
		合计		50			
		作品测试总分		100			


作品照片



参赛学生: 卢圣健 刘 鹤 周 鲜

指导教师: 袁晓光、王新怀

参赛学生: 肖凯迪 黄君利 杨光浦

指导教师: 易运晖 贺小云

2017年信号通信题目解析

远程幅频特性测试装置(H题)

一、任务

设计并制作一远程幅频特性测试装置

- 二、要求
- 1. 基本要求
- (1) 制作一信号源。输出频率范围: 1MHz 40MHz; 步进: 1MHz, 且具有自动 扫描功能; 负载电阻为 600 时,输出电压峰峰值在 5mV 100mV 之间可调。
- (2)制作一放大器。要求输入阻抗:600;带宽:1MHz-40MHz;增益:40dB,要求在0-40dB连续可调;负载电阻为600时,输出电压峰峰值为1V,且波形无明显失真。
- (3)制作一用示波器显示的幅频特性测试装置,该幅频特性定义为信号的幅度随频率变化的规律。在此基础上,如图 1 所示,利用导线将信号源、放大器、幅频特性测试装置等三部分联接起来,由幅频特性测试装置完成放大器输出信号的幅频特性测试,并在示波器上显示放大器输出信号的幅频特性。

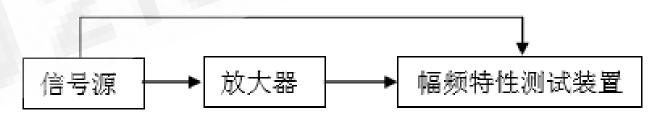


图 1 远程幅频特性测试装置框图 (基本部分)

自适应滤波器 (E题)

2. 发挥部分

- (1) 在电源电压为+5V 时,要求放大器在负载电阻为 600 时,输出电压有效值为 1V,且波形无明显失真。
 - (2) 如图 2 所示,将信号源的频率信息、放大器的输出信号利用一条 1.5m 长的 双绞线(一根为信号传输线,一根为地线)与幅频特性测试装置联接起来,由幅频特性测试装置完成放大器输出信号的幅频特性测试,并在示波器上显示放大器输出信号的幅 频特性。
- (3) 如图 3 所示,使用 WiFi 路由器自主搭建局域网,将信号源的频率信息、放 大器的输出信号信息与笔记本电脑联接起来,由笔记本电脑完成放大器输出信号的幅频 特性测试,并以曲线方式显示放大器输出信号的幅频特性。(4) 其他。

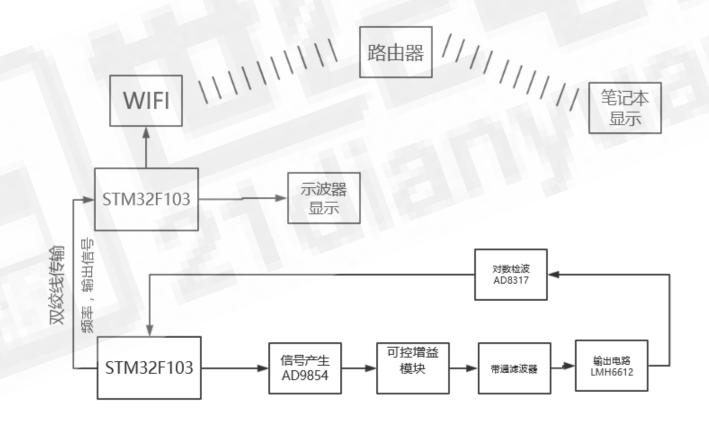
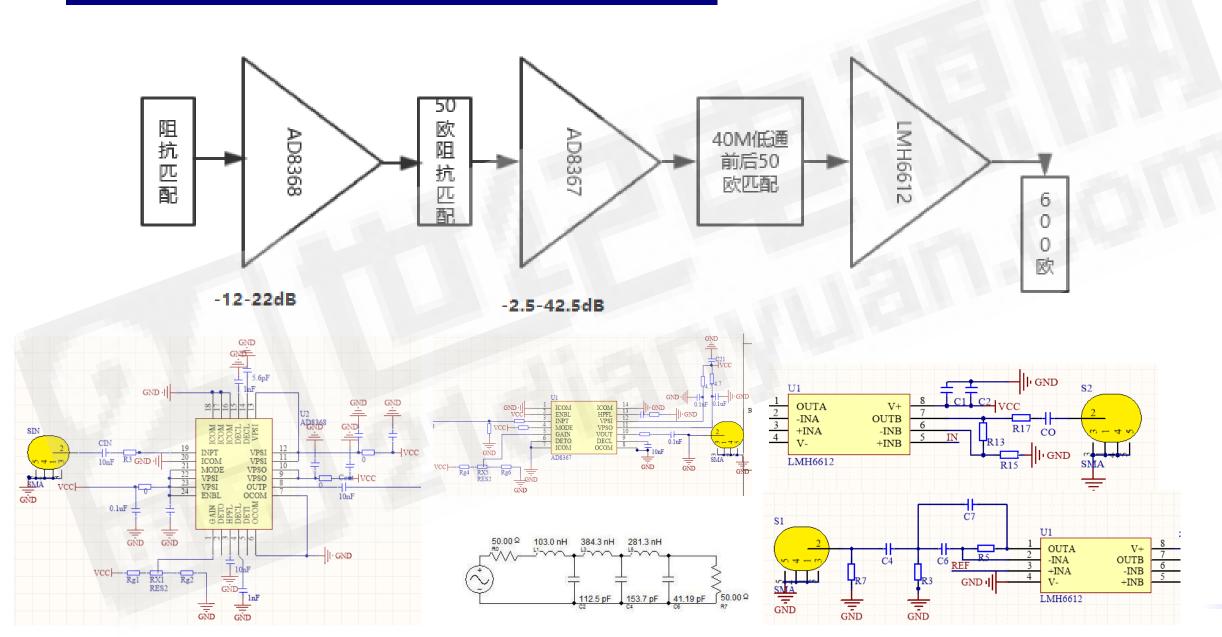
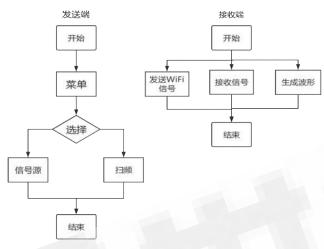

图 2 有线信道幅频特性测试装置框图 (发挥部分 (2))

图 3 WiFi 信道幅频特性测试装置框图 (发挥部分 (3))


远程幅频特性测试装置

- 三、说明
- 1. 笔记本电脑和路由器自备(仅限本题)。
- 2. 在信号源、放大器的输出端预留测试端点



远程幅频特性测试装置

远程幅频特性测试装置

++						
	预设频率/MHz	1	5	10	20	40
	实测频率/MHz	1.00	5.00	10.0	19.99	40.02
	频率绝对误差	0	0	0	0.01	0.02
	频率相对误差(%)	NUL	NUL	NUL	0.5%	0.5%
		L	L	L		

表 2 信号源频率测量

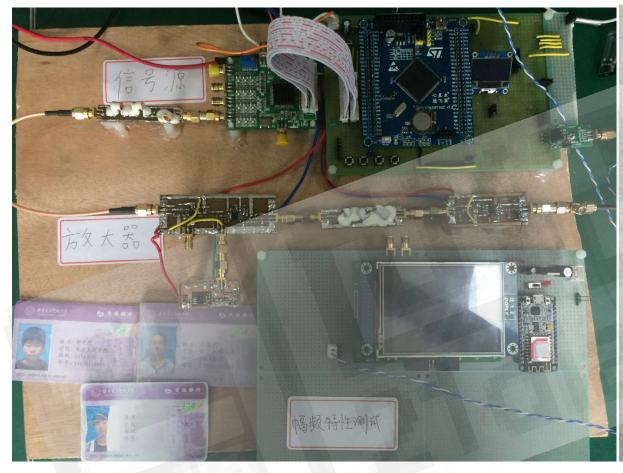
结果分析:信号源频率可通过单片机设置,频率**绝对误差不大于 0.5%**,完全满足题目要求。误差分析:示波器的测量误差,DDS 的控制误差。

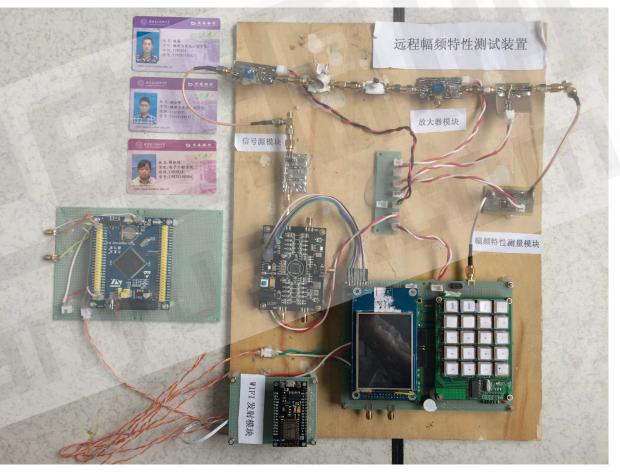
表 3 信号源幅度测量

₹ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □							
给定值/mV	5	20	50	80	100		
F=1MHz 时	5.01	20.06	50.10	80.1	100.2		
F=20MHz 时	5.02	20.01	50.11	80.08	100.0		
F=40MHz 时	4.98	20.04	50.08	80.02	99.8		
幅度绝对误差	0.02	0.06	0.11	0.1	0.2		
幅度相对误差(%)	0.4%	0.3%	0.22%	0.13%	0.2%		

结果分析:信号源幅度可通过单片机设置,幅度**绝对误差不大于0.2**,完全满足题目要求。

误差分析: DDS 输出幅度随着频率增大而减小;示波器测量误差;


5 . WiFI 发送模块


通过 esp8266 接受串口数据并发送出去,之后由上位机的 matlab 代码接受并显示图片。 其中 matlab 代码如下。

```
$\pmodel{\textstyle=1} \text{Clear; clc; close all;}
$\pmodel{\textstyle=1} \text{tcpipServer} = tcpip('0.0.0.0', 8266, 'NetWorkRole', 'Server');}
$\pmodel{\text{topipServer}} \text{tcpip} \text{tcpip} \text{idpipServer}, 'Server');
$\pmodel{\text{topipServer}} \text{topipServer}, 'InputBufferSize', 8*N);}
$\text{set} \text{(tcpipServer, 'OutputBufferSize', 2048);}
$\text{fprintf('tcp buffer \text{\text{topipServer}}, 'OutputBufferSize', 2048);}
$\text{fprintf('tcp buffer \text{\text{\text{topipServer}}}, 'OutputBufferSize', 2048);}
```


参赛学生: 王春亮 王凯隆 谢也佳

指导教师: 王新怀、周佳社

参赛学生: 薛林培 赵磊 谢金峰

指导教师: 王新怀、周佳社

信号通信类题目发展趋势

- 》通信技术发展日新月异,紧跟新技术发展。高度简化浓缩学科前沿的科学技术问题,使本科生紧密接触国际上备受 关注的前沿热点研究领域。如互联网+,AI。。。。
- 发现教学薄弱环节,强化基础知识的掌握,结合信号通信相关课程,促进教学改革。
 - ✓ 互联网+: 如何构造一个公平的测试平台
 - ✓ 高效的频谱: MIMO, OFDM, 同时同频双工
 - ✓ 多样的信道:有线、无线、光通信等
 - ✓ 更高的频率:实际通信已由GHz进入THz
 - ✓ 泛在的网络:物联网、互联网、电信网、传感网自组织网,中继转发、协作通信
 - ✓ 通信测试仪器: 网仪、谱仪、眼图、特殊信号源等
 - ✓ 通信软件: 协议, 界面控制, 软件无线电, AI
 - ✓ 通信硬件: 高频(射频) 电路, 低噪声技术, 高速数字信号处理, 高效调制解调技术
 - ✓ 现有通信系统的应用:如互联网、短距通信、2.4GHz ISM频段、蓝牙、wi-fi等
 - ✓ 电磁兼容: 收发隔离、DC-DC变换,通信抗干扰,电子对抗
 - ✓ 低功耗技术,绿色通信技术

感谢电赛组委会! 祝同学们创佳绩! 欢迎大家来交流!

xinhuaiwang@xidian.edu.cn