电力电子系统高频传导和辐射 电磁干扰的分析和抑制

王硕教授 (Dr. Shuo Wang) IEEE Fellow Power Electronics and Electrical Power Research Lab 美国佛罗里达大学

公元2019年七月

rev 20180504

电力电子系统高频传导干扰

传导干扰的产生,传播和高频传导干扰的抑制

Content

- I. Identify EMI sources and propagation paths
- **II.** Some common mechanisms for high frequency (HF) conductive EMI
 - A. HF EMI due to the spectrum of EMI noise sources
 - **B. HF DM EMI caused by inductor impedance valleys on DM propagation paths**
 - C. HF CM EMI caused by the resonances and parasitic couplings on CM noise propagation paths
 - D. HF EMI due to parasitic near magnetic couplings with magnetic components
 - E. HF EMI due to bad PCB layouts

I. Identify EMI sources and propagation paths

Identify DM EMI Noise Sources and Propagation Paths

- DM EMI noise sources are equivalent voltage or current sources for switching devices
- DM propagation paths include all impedances on and between two power delivery lines

Effects of Noise Source and Path Impedance on DM Noise

Dr. Shuo Wang, shuowang@ieee.org

UF

Identify CM EMI Noise Sources and Propagation Paths

- CM EMI noise sources are equivalent voltage or current sources for switching devices
- CM EMI flows from voltage pulsating nodes to parasitic capacitance, to ground and back to the main circuit.

DRAIN

GATE

C_{hG}

Effects of Noise Source and Path Impedance on CM Noise

 CM EMI spectrum is determined by both switching waveforms and impedances on propagation paths

II. Some Common Mechanisms for High Frequency (HF) EMI

A. Effects of noise sources: switching frequency, speed and ringing on EMI spectrum (for the boost converter case)

UF FLORIDA • Higher speed and higher f -> CM and radiative EMI are more significant Dr. Shuo Wang, shuowang@ieee.org

Measured Noise Source Waveforms and Spectrum at Different Frequency but Similar Speed

Technical Solutions based on Noise Source Spectrum

- 1. Try to use Monolithic solution like MPQ4436 which has very low ringing
- 2. Try to utilize the energy stored in parasitics to reduce ring: Using soft switching technique such as ZVS and active clamp to absorb parasitic ringing due to parasitics
- 3. Trade off between switching speed and switching power loss Control switching speed by control driving currents
- 4. Reduce switching frequencies with both EMI and efficiency benefits, possibly power density benefit too

5. Frequency jittering to spread EMI energy. MPS has the most effective jittering strategy

B. HF EMI due to Inductor Impedance on DM EMI Propagation Paths

Reduce HF DM EMI with Inductor Design

Core materials:

Original: Cool Mu; ur=60 Redesigned: Iron Powder; ur=100

- (1) Higher HF core loss(0.46W higher);----Higher damping at resonant frequencies
- (2) Higher permeability therefore fewer number of turns and smaller parasitic capacitances

Original inductor

----Higher first peak frequency. Extending self-attenuation to higher frequency.

10000000

Hz

100000000

- Lossy inductor is good for HF EMI reduction
- Always sweep
 inductor impedance

A MIN B MIN

 $10k\Omega$

 $1k\Omega$

100Ω

 1Ω

1kHz

C. HF EMI due to the CM resonance of EMI filter and the converter

HF EMI due to the coupling between grounding paths

Noise is amplified by n times:

- M's effects are amplified by I_{CM3}/I_{CM4} times, I_{CM3}/I_{CM4} =40dB/dec,
- M's effects would be dominant at HF

Techniques to reduce CM resonance and coupling between grounding Paths

- Reduce converter input CM loop area
- Move two grounding paths far away
- Reduce lengths of grounding paths

D. High Frequency CM Noise due to Parasitic Couplings with Magnetic Components

High Frequency CM EMI due to Magnetic Couplings

- The winding openings of a transformer have high near magnetic field
- Avoid sensitive circuits close to winding openings

.

nput wire at exposed winding side

Input wire at confined core side

E. High Frequency EMI due to PCB Layout

UF FLORIDA Dr. Shuo Wang, shuowang@ieee.org

• If the grounding layer is not quiet, the grounding layer should not be close to the sensitive input

Improve PCB Layout to reduce High Frequency EMI

电力电子系统辐射干扰

辐射干扰的产生,传播和抑制

- I. DM and CM currents, which one is the major contributor of radiation?
- **II.** General radiation model for power converters
- **III.** Noise source and its effects on radiated EMI
- IV. Interaction between noise sources and an undesired antenna
- V. Reduction of radiation with Y-capacitors

I. DM and CM currents, which contributes more to far field radiation?

Antenna Model for Cable (power interconnect)

Lumped Model of the Antenna

- R_r Radiation Resistance \rightarrow Radiated Power
- R_l Loss Resistance \rightarrow Ohmic Power Loss
- jX_A Antenna Reactance \rightarrow Reactive Power

Full Radiation Model

 $E_{max} = \sqrt{\frac{\eta G_o}{4\pi r^2}} \times |I_A| \sqrt{R_A}$ $= \sqrt{\frac{\eta G_o}{4\pi r^2}} \times |V_S| \times \frac{\sqrt{R_A}}{\sqrt{(R_S + R_A)^2 + (X_S + X_A)^2}}$ Noise source Due to Impedances

 Radiation is determined by both the noise source and propagation path impedances

Development of Converter and Antenna Radiation Model

Converter radiation model:

Base on Substitution Theory and Thevenin Theory:

- 1) Replace switching devices with voltage or current sources in the converter circuit
- 2) Disconnect cable antenna, measure open loop impedance R_S+jX_S between input and output of the converter after short voltage sources (semiconductor switches) and open current sources (semiconductor switches) in the converter circuits
 3) Open loop voltage V_S between the input and output of the converter cannot be directly measured due to the impedance of the voltage probe, it can be derived based on the probe impedance or V_A can be derived based on network analyzer measurements (see reference [5][6])

Cable antenna model:

Impedance $R_l + R_r + jX_A$ of the cable antenna can be measured with the converter disconnected

 $R_{S} I_{A}(2i_{CM}) R_{l}$

jΧs

Converte

 jX_A

Power Connect

Antenna

 $\leq R_r$

III. Noise Sources and Its Effects on Radiation

- Low-frequency radiation is determined by trapezoidal wave
- High-frequency radiation is determined by parasitic ringing

Noise Source Total Wave Trapezoidal **Trapezoidal Wave** Spectrum **ZVS Wave** 100 Ringing Mag(dBuV) Ringing 80 60 40 143*MHz* 30 100 500 Frequency (MHz) Radiated ELectric Field(dBuV/m) 0 0 0 0 0 0 0 0 0 0 Measured E Field (3m semi Anechoic Trapezoidal Ringing chamber) 30 100 Frequency(MHz)

120

IV. Interaction between Noise Source and the undesired Antenna

UF FLORIDA Dr. Shuo Wang, shuowang@ieee.org MPS

Resonance due to Impedance Interaction

Verification of the Effects of Impedance Interactions on Radiation

MPS

V. Reduction of Radiation with a Y-Capacitor

Radiated EMI Reduction with a Y Capacitor

Measured E field in a 3m semi anechoic chamber

UF FLORIDA Dr. Shuo Wang, shuowang@ieee.org MPS

Reference List

[1] Shuo Wang, Fred C. Lee and W. G. Odendaal, "Single Layer Iron Powder Core Inductor Model and Its Effects on Boost PFC EMI Noise," in *Proc. IEEE Power Electronics Specialists Conference*, 15-19, Jun. 2003, Volume 2, pp. 847 –852.

[2] Shuo Wang, Pengju Kong and Fred C. Lee, "Common Mode Noise Reduction for Boost Converters Using General Balance Technique," in *proc. of IEEE Power Electronics Specialists Conference*, 18-22, June, 2006. pp. 3142-3147.
[3] Shuo Wang, Yoann Yorrick Maillet, Fei Wang, Dushan Boroyevich, Rixin Lai and Rolando Burgos, "Investigating the Grounding of EMI Filters in Power Electronics Systems," in *proc. of IEEE Power Electronics Specialists Conference*, 18-22, June, 2006, pp. 3142-3147.
[3] Shuo Wang, Yoann Yorrick Maillet, Fei Wang, Dushan Boroyevich, Rixin Lai and Rolando Burgos, "Investigating the Grounding of EMI Filters in Power Electronics Systems," in *proc. of IEEE Power Electronics Specialists Conference*, 15-19, June, 2008, pp. 1625-1631.

[4] Yongbin Chu, Shuo Wang, Dianbo Fu and Jun Xu, "EMI Reduction with Near Field Coupling Suppression Techniques for Planar Transformers and CM Chokes in Switching-Mode Power Converters" in *proc. of IEEE Energy Conversion Congress and Exposition*, Sept. 15-19, 2013. pp. 3679-3686.

[5] Yingjie Zhang, Shuo Wang and Yongbin Chu, "Investigation of Radiated Electromagnetic Interference for An Isolated High Frequency DC-DC Power Converter with Power Cables," in *IEEE Transactions on Power Electronics*, 2019.
[6] Yingjie Zhang and Shuo Wang, "Comparison of Radiated Electromagnetic Interference (EMI) Generated by Power Converters with Silicon MOSFETs and GaN HEMTs," in *Proc. of 2019 IEEE Applied Power Electronics Conference and Exposition (APEC)*, Anaheim, CA, March 17-21, 2019.

[7] Yiming Li and Shuo Wang, Honggang Sheng and Srikanth Lakshmikanthan," Reduction and Cancellation Techniques for the Near Field Capacitive Coupling and Parasitic Capacitance of Inductors," in *proc. of IEEE International Symposium on Electromagnetic Compatibility, Signal and Power Integrity*, Long Beach, CA, Jul. 30-Aug. 3, 2018.

UF FLORIDA

Questions or Comments?

如需MPS公司技术支持,请联系: mpssupport@monolithicpower.com

