

POWER BY LINEAR

MALUG

ADI leading High-performance Power Innovation

LORRY LIANG POWER PRODUCT MARKETING DIRECTOR

©2018 Analog Devices, Inc. All rights reserved.

Technologies for Today and Tomorrow's Innovations

ADI + LTC : High Performance Analog Industry Leader ...

ADI + LTC : High Performance Analog Industry Leader ...

Broad and Highly Complementary Portfolio of Leading Long Lifecycle, High Value Products

ANALOG DEVICES

Power Innovation Technologies

Industrial

Accelerating the Path to Industry 4.0

Deep Domain Expertise Across the Factory

Motion Control Robotics and Cobots Industrial Ethernet

Condition-Based Monitoring

Functional Safety

Security

Key Industry 4.0 Accelerators

Real-Time Deterministic Ethernet

Multiprotocol switching enabling true determinism to the edge

Software Configurable I/O

Flexibility, space savings, and cost savings

Condition-Based Monitoring for Machine Health Reliable analytics for predictive maintenance

Industry 4.0 Delivers on Increased Productivity See where ADI is accelerating the transition to the secure connected enterprise Intelligent Universal **Edge Nodes** Analo Flexibility Robotics and Motion Control 3 The shift to more flexible architectures allows for greater capacity and faster reconfiguration. Using universal analog I/O (input/output) brings integration, robustness, flexibility, and efficiency with significant time and cost savings. All of which create opportunities for virtualization utilizing AI and digital twin technologies. Efficiency SmartMesh[®] for Industrial Even a 1% reduction in energy use can bring tremendous savings to a factory operator. These savings can be realized through the adoption of inherently lower power solutions that are then augmented by condition-based machine monitoring analytics. mm Communications **Real-Time** Smart 🥿 Autor Deterministic Ethernet Central to the execution of Industry 4.0 is robust and secure wired and wireless communication that must support legacy standards and provide a clear path to Ethernet to the Edge and Time Ability to Simultaneously Deliver Sensitive Networks (TSN). **Three Performance Metrics** Safety **High Power Efficiency** A system is not smart if it is not safe. Functional safety is Manage heat dissipation in the smallest form factors to improve quality and reliability ubiquitous in automation systems with strict standardization and certifications requirements. Small Form Factor Security Reduce form factor to reduce PCB space while adding functionality

Low EMI

Greater connectivity of smart machines with Industry 4.0 brings with it risks from cyber attacks. Factory operators and solution providers need to develop stronger cybersecurity strategies that are more vigilant and resilient to attack.

Reduce electromagnetic interference (noise) and improve accuracy

ANALOG

Generalized 3-Phase Inverter/Motor System

Innovation – Ideal Diode

- Connects highest voltage supply to output
- ► Low forward turn-on voltage (< 50 mV)
- Controls external N-channel or P-channel MOSFETs
- Linear regulation of MOSFET forward voltage drop
- Conserves voltage and power over Schottky diodes
- Minimizes or eliminates heat sinks
- Works as high side load switch with back-to-back MOSFETs
- Blocks reversed inputs from load

Ideal Diode

- Internal power MOSFET for compact solution footprint
- Load currents up to 5 A
- Low reverse leakage current (< 1 µA at 25°C, < 10 µA at 125°C)</p>

Innovation - Silent Switcher

 The two high current loops cancel each others magnetic field, almost like enclosing the circuit in a metal box

AHEAD OF WHAT'S POSSIBLE

Silent Switcher Eliminates Switch Ringing

- Better EMI
- Lower voltage stress
- Higher efficiency with possibility of faster switching edges

Analog Devices Highly Confidential Information. ©2018 Analog Devices, Inc. All rights reserved.

Silent Switcher 2 Also Provides Low Output Ripple

Analog Devices Highly Confidential Information. ©2018 Analog Devices, Inc. All rights

reserved.

Silent Switcher 2 Can Have Low EMI with 2 Layer PCBs Spacing Between Layer 1 and GND Layer 2 is not as Critical

LT8609S 2-Layer Demonstration Circuit EMI is low on both 2-layer LT8609S and 4-layer LT8609S solutions.

2-layer Average EMI passes CISPR 25 Class 5 with room to spare.

Analog Devices Highly Confidential Information. ©2018 Analog Devices, Inc. All rights reserved.

13

Typical Isolated Flyback Schematic

AHEAD OF WHAT'S POSSIBLE™

ANALOG

Isolated Flyback – Simple, but with Great Performance

Analog Devices Confidential Information. ©2017 Analog Devices, Inc. All rights reserved.

EVs and EHVs need many isolated supplies

- ▶ V_{IN} Range: 20V to <u>540V</u>
- <u>300mA</u>, <u>630V</u> Internal Power Switch
- Delivers up to ~10W from 250-450V_{IN}

Analog Devices Confidential Information. ©2017 Analog Devices, Inc. All rights reserved.

Power Innovation Technologies

Reduce form factor enabling customers to reduce PCB space or add incremental functionality

LTM4622 Dual 2.5A Power Module 6.25mm x 6.25mm

1.5V and 1V Dual Output DC/DC Step-Down µModule Regulator

LTM4668 Quad 1.5A Power Module

FEATURES

Quad Output Step-Down μModule Regulator with 1.5A per Output Channel

< 10 mm

6mm

BMN

- Wide Input Voltage Range: 2.7V to 17V
- O.6V to 1.8V Output Voltage (LTM4668A for 1.8V to 5.5V)
- 1.5A DC Parallelable, Output Current Each Channels VS Competitor
- ±1.5% Total Output Voltage Regulation
- 100% Duty Cycle Operation
- Low IQ<5uA for Each Channel</p>
- Current Mode Control, Fast Transient Response
- External Frequency Synchronization
- Selectable Burst Mode
- Power Good Indicator
- Over Voltage, Current and Temperature Protection
- 6.25mm x 6.25mm x 2.1mm BGA Package

10M

Analog Devices Confidential Information. ©2017 Analog Devices, Inc. All rights reserved.

LTM4644 Quad 4A Power Module

FEATURES

- Quad Output Step-Down µModule[®] Regulator with 4A per Output
- Wide Input Voltage Range: 4V to 14V
 - 2.375V to 14V with External Bias
- 0.6V to 5.5V Output Voltage
- 4A DC, 5A Peak Output Current Each Channel
- Up to 5.5W Power Dissipation (T_A = 60°C, 200 LFM, No Heat Sink)
- ±1.5% Total Output Voltage Regulation
- Current Mode Control, Fast Transient Response
- Parallelable for Higher Output Current
- Output Voltage Tracking
- Internal Temperature Sensing Diode Output
- External Frequency Synchronization
- Overvoltage, Current and Temperature Protection
- 9mm × 15mm × 5.01mm BGA Package

LTM4644's Outputs Are Configurable from Four 4A Outputs to a Single 16A

Isolated power module serial

	Isolation	Out	put	Input Voltage (V)		Output Voltage (V)		Output	Output Power	UL	BGA Package
Part Number	Voltage	Channels	LDO Out	Min	Max	Min	Max	Ripple	(24V to 5V)	Recognized	Dimensions (mm)
LTM8047		1	×	3.1	32	2.5	12	20mVrms	1.5W	-	9 x 11.25 x 4.92
LTM8048	725000	2	0	3.1	32	1.2	12	20µVrms	1.5W Combined *	_	9 x 11.25 x 4.92
LTM8057		1	×	3.1	31	2.5	12	20mVrms	1.5W	UL60950	9 x 11.25 x 4.92
LTM8058		2	0	3.1	31	1.2	12	20µVRMS	1.5W Combined *	UL60950	9 x 11.25 x 4.92
LTM8067		1	×	2.8	40	2.5	24	30mVrms	2.25W	UL60950	9 x 11.25 x 4.92
LTM8068		2	0	2.8	40	1.2	18	20µVrms	2.25W Combined*	UL60950	9 x 11.25 x 4.92
LTM8046		1	×	3.1	31	1.8	12	20mVrms	2.75W	UL60950	9 x 15 x 4.92

*combine isolated output and LDO output

Power Management for Industrial

- Silent Switch DC/DC
- **Isolated Power**
- **Power uModule**

Autonomous Transportation

LDOs – Ultralow Noise, Ultrahigh PSRR family

Ideal for 77/79GHz automotive radar applications

- Ideal for RF applications
 - Reduces phase noise for PLLs and synthesizers
- Industry's lowest noise and highest PSRR
 - LT3042 (200mA) LT3045 (500mA)
 - RMS Noise: 0.8µV_{RMS} (10Hz to 100kHz)
 - Spot Noise: $2nV/\sqrt{Hz}$ at 10kHz
 - PSRR: ≥76 dB at 1MHz
 - LT3094 (500mA, negative-V_{OUT})
 - Similar Noise and PSRR specs

24

Innovation-Low noise power

Power Innovation Technologies

Reduce electromagnetic interference (noise)

Power Innovation Technologies

PoDL Power Over Data Line

The future of autonomously driven vehicles is around the next bend

Save Vehicle Weight and Cabling Cost Using UTP/PoDL

27 Analog Devices Confidential Information. ©2018 Analog Devices, Inc. All rights reserved.

Innovation Care about your safety

LED Headlamps now provide style and greater safety

Automotive Electrification

Making Tomorrow's Cars Greener and More Efficient

Extensive Experience in Car Electrification

Electric and Hybrid Battery Management Automotive Powertrain

Cabin Infotainment

Leading Solutions for Increased Electronic Content Power Management

Power Management

Battery management systems, power distribution network, xMR sensors

Power Train

Motor control, chassis control, start-stop, electric drive

Infotainment

Audio video processing, telematics, driver monitoring

Battery Active Balanceing

Battery energy optimization Safe drive longer distance

LTC3871 – Bidirectional Multi-Phase Synchronous Buck or Boost Controller

- Targeted 48V/12V Dual Battery Applications:
 - Automotive Internal Combustion Engines
 - Hybrid Electric Vehicles
 - Mild Hybrid Electric Vehicles

Concept of the LTC3871 Bi-directional DC/DC Converter

Concept of the LTC3871 Bi-directional DC/DC Converter

- Designed for 2.5kW (14V*180A, 15A/ph)
- Compact layout, cannot mount a heatsink
- Steady-state power 2kW
 (12A/ph) limited by thermal

Power Innovation Technologies – Ideal diode Bridge

Active Diode Bridge Controller Minimizes Voltage Drop & Heat Sinking Requirements **Temperature Rise vs Load Current**

Analog Devices Confidential Information.
 ©2018 Analog Devices, Inc. All rights reserved.

Automotive Applications Need Surge Stoppers and OV/OC Protection Controllers to Protect Vulnerable Systems

ADI Surge Stoppers and OV/OC Protection Controllers: Value Proposition

LTC4380-2: Low Iq Surge Stopper Protects Expensive Electronics From High Voltage Surges

Application: Automotive Radar Application

Solution: LTC4380-2

The customer will choose the LTC4380-2 because it will protect the radar module from the hazardous voltages present in automotive applications and has low quiescent current

Communications

Driving Innovation for Next-Generation Communications

Connectivity Solutions for 5G and Beyond

Get to Market Faster with Best-in-Class Expertise Coupled with Design Capabilities, Tools, and Software

Wireless: Market leading solutions for radio head and base station processing

Cable Access: Leading technology for 5G cable including full duplex solutions

Optical Networking: Optical transceivers solutions, high speed converters, power

Satellite/Point-to-Point: Deep portfolio plus market leading solutions for high frequency 5G wireless solutions

Power Innovation Technologies

High Power Density

Need High efficiency

Need High reliability

Analog Devices Confidential Information.
 ©2018 Analog Devices, Inc. All rights reserved.

Power Innovation Technologies

Power Innovation Technologies Inductorless Converter LTC7820

99% Efficient Step-Down, Step-Up or Invert

Power Innovation Technologies Hybrid Converter LTC7821

Non-Isolated Distributed Power Architecture Using LTC7821 48V to 24V 500W

56% Smaller

Power Innovation Technologies

Reduce form factor enabling customers to reduce PCB space or add incremental functionality

High Current µModule Regulator Roadmap with Power System Management (PSM)

LTM4677 Dual 18A or Single 36A µModule Regulator with Digital PSM

Performance

- □ Vin: 4.5V to 16V
- \Box Vout: 0.5V to 1.8V
- □ +/-0.5% Max total DC output error
- □ PMBus-compliant I²C interface
 - Sequencing / tracking, Vout, Supervisory levels
- 16 bit-capable telemetry
 Vin, Iin, Vout, Iout, Temp, Faults
- □ Fast response to line and load transients
 - Constant frequency current mode control
- Nonvolatile configuration and fault log
- ©2017 Analog Devices, Inc. All rights reserved IGMM X IGMM X 5MM BGA

45

LTM4678 Dual 25A or Single 50A µModule Regulator with Digital PSM

FEATURES

- Dual Digitally Adjustable Analog Loops with Digital Interface for Control and Monitoring
- Wide Input Voltage Range: 4.5V to 16V
- Output Voltage Range: 0.5V to 1.8V
- ±0.5% Maximum DC Output Error Over Temperature
- ±2.5% Current Readback Accuracy
- Sub-Milliohm DCR Current Sensing
- Integrated Input Current Sense Amplifier
- 400kHz PMBus-Compliant I²C Serial Interface
- Supports Telemetry Polling Rates up to 125Hz
- Integrated 16-Bit $\Delta \Sigma$ ADC
- Constant Frequency Current Mode Control
- Parallel and Current Share Multiple Modules
- 16mm × 16mm × 5.74mm BGA Package

Power Innovation Technologies

Ideal Diode and Hot Swap Controller

- Ideal Diode (ID) for redundant supply active ORing, reverse current blocking, and supply holdup
- Hot Swap (HS) for inrush current control, overcurrent and under/overvoltage protection (UV/OV)
- Fast 0.5 µs ideal diode turn-on and turn-off time
- Current-limited circuit breaker with adjustable delay
- Current monitoring (CM), power good, circuit breaker fault, and diode status (DS) outputs

47 Analog Devices Confidential Information. ©2018 Analog Devices, Inc. All rights reserved.

High Performance FPGA Designs Need Digital Power System Management

Power Supply Features Needed

- Accurate Regulated Voltage
- Supply Sequencing
- VOUT Adjustment & Margining
- Measure
 - Voltage, Current, Power, Temperature
- Manage & Respond to Faults
 - Record Faults in NVM (Fault Log)

Power over Ethernet

LTPoE++ PSE and PD Deliver Up To 150W Over Ethernet Cable

150W POE Solution

Function: PSE and PD

Application: PoE for Small Cell Application

Solution: LTC4291 + LTC4292+ LT4294

The customer will choose the LTC4292 & LTC4291 & LTC4294 to deliver 150W to MIMO/5G/Small Cell base station over CAT5 cable.

Firmware will provide interoperability between af, at and bt and higher power modes.

MIMO/5G/Small Cell Main Signal Chain Solution

Energy

Enabling the Transition to Efficient, Clean, and Reliable Energy

Improving Energy Management Applications

Real-Time Accuracy Monitoring Tamper Re Detection G Sy

Renewable Energy Generation and System Integration Advanced Diagnostics and Analytics

Intelligent Energy Technologies

Utility Smart Grid

Meter, substation equipment, low voltage distribution

Renewable Generation and Storage

Solar and storage inverters, battery management, EV charging infrastructure

Enterprise Energy Management

Data centers, factory power, machine health monitoring

Power Innovation Technologies

Power Grid Monitor unit : FCI

52 Analog Devices Confidential Information. ©2018 Analog Devices, Inc. All rights reserved.

LT3652 – Solar source battery charge with MPPT

Features

•Input Supply Voltage Regulation Loop for Peak Power Tracking in (MPPT) Solar

Applications

•Wide Input Voltage Range: 4.95V to 32V (40V Abs Max)

•Programmable Charge Rate Up to 2A

•User Selectable Termination: C/10 or On-Board Termination Timer •Resistor Programmable Float Voltage Up

to 14.4V Accommodates Li-Ion/Polymer,

LiFePO₄, SLA Chemistries

•No V_{IN} Blocking Diode Required for Battery Voltages $\leq 4.2V$

•1MHz Fixed Frequency •0.5% Float Voltage Reference Accuracy

•5% Charge Current Accuracy

•2.5% C/10 Detection Accuracy

•Binary-Coded Open-Collector Status Pins

•Thermally Enhanced 12-Lead 3mm × 3mm

DFN and

MSE Packages

TYPICAL APPLICATION

2A Solar Panel Power Manager With 7.2V LiFePO₄ Battery and 17V Peak Power Tracking

LTC3350 High Current Super Cap backup controller & monitor

V_{OL} 2V/DI

> VC/ 2V/D

2V/DIV

LTC3350: High Current Supercapacitor Backup Controller and System Monitor

Features

- High Efficiency Synchronous Step-Down CC/CV Charging of One to Four Series Supercapacitors
- Step-Up Mode in Backup Provides Greater Utilization of Stored Energy in Supercapacitors
- 14-Bit ADC for Monitoring System Voltages/ Currents, Capacitance and ESR
- Active Overvoltage Protection Shunts
- Internal Active Balancers—No Balance Resistors
- V_{IN}: 4.5V to 35V, V_{CAP(n)}: Up to 5V per Capacitor, Charge/Backup Current: 10+A
- Programmable Input Current Limit Prioritizes System Load Over Capacitor Charge Current
- Dual Ideal Diode PowerPath[™] Controller
- All NFET Charger Controller and PowerPath Controller
- Compact 38-Lead 5mm × 7mm QFN Package

Applications

- High Current 12V Ride-Through UPS
- Servers/Mass Storage/High Availability Systems

High Current Supercapacitor Charger and Backup Supply

LTC4041 Backup Power application (Option OVP function)

- 15W Backup Power Application with two 50F Supercapacitors in series
 - LTC4041 can backup <u>5V/3A</u> system load for about <u>4.5 seconds</u>.

Analog Devices Confidential Information—Not for External Distribution.

LTC4041 backup power application

APPLICATIONS

- Ride-Through "Dying Gasp" Supplies
- High Current Ride-Through 3V-5V UPS
- Power Meters/Industrial Alarms
- Servers/Solid State Drives

Super Cap VS Li-Polymer : LTC4041 VS LTC4040?

- Calculate the Joules:
 - Backup Energy Required = Average Power x Total Backup Time
 - E = P_{AVG} x t_{BACKUP}
- Supercapacitor vs Battery:

	Two 2.5V, 10F Supercapacitors	3.7V, 450mAh Li-polymer
Energy	60J	6000J
Volume	4700mm ³	4800mm ³
Backup Time for 15mW	1 Hour	100 Hours
Backup Time for 1W	1 Minute	100 Minutes
Backup Time for 20W	1-2 Seconds	Probably Not Possible
	use LTC4041	use LTC4040

Power innovation : Energy Harvest

Part Number	Energy Source	Description
LTC [®] 3105	હે 🥥	400mA boost converter with MPP control and 250mV start-up
LTC3106	ର 🔶	300mA buck-boost converter and power manager with MPPC
LTC3107	ର \varTheta	Ultralow voltage converter and primary battery life extender
LTC3108	ର 🧼	Ultralow voltage boost converter and system manager
LTC3109	ର 🤭	Auto-polarity version of LTC3108
LTC3330/31	🔗 🧄 🍿 📞	Energy harvesting DC/DC converter with battery life extender
LTC3588	shik 📞	Piezoelectric energy harvesting power supply
LT [®] 3652/HV	0	Power tracking 2A solar battery charger
LTC4070/71	👌 🍚 🎼 📚	Nanoamp operating current shunt Li-Ion battery charger

Power Innovation Technologies

59 Analog Devices Confidential Information.

©2018 Analog Devices, Inc. All rights reserved.

Power Innovation Technologies

60 Analog Devices Confidential Information. ©2018 Analog Devices, Inc. All rights reserved.

Electromagnetic Prototype

Schematic of electromagnetic energy harvester

Components of the electromagnetic prototype

- Magnet and back iron rotate together to change the magnetic flux through coils
- Near constant magnetic field (~0.5T)

Power Management (Regulators)

Test Guaranteed VS Design Guaranteed

Features

LTC3803

TYP

9.5

9.5

9.5

0.6

0.6

MIN

8.4

8.4

8.1

0.05

0.03

Low	20µA	Quiescent	Current	

- +3.5V to +30V Wide Input Voltage Range, +45V Tolerant
- Operates Through Cold-Crank Conditions
- Low-Dropout Voltage of 280mV at 200mA
- Up to 200mA Output Current Capability
- A THE OWNER Compatient Stable Operation
- User-

- +1 Res
- Open-
- Fixed
- High-
- Thern
- Opera

Autor

on with Tiny 4.7µF Output Capacitor		
200mA, Automotive	V _{CLAMP25mA}	,
Quiescent Current,		

- **ELECTRICAL CHARACTERISTICS** (
 - (VIN = VENABLE = +14V CTIMEOUT = ODED CIN = 10 ot

otherwise note	Typical values are	$T_A = +25^{\circ}C$.) (Note 2)			
PARA	AMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX
SETOV INPUT	(TRI-MODE)					
SETOV Input Leakage Current			SET = HIGH, VSETOV = 5V or SET = GND, VSETOV = 5V		1	
SETOV Low-Level Input Voltage		VILSETOV	SET = GND, VSETOV < VILSETOV or places device in +3.3V fixed output-voltage mode			0.4
SETOV High-Le	evel Input Voltage	VIHSETOV	SET = GND, VSETOV > VIHSETOV or places device in +5V fixed output-voltage mode	VOUT - 0.4		

VMARGIN

SYMBOL

PARAMETER

V_{CC} Shunt Regulator Voltage at 25mA

V_{CLAMP1mA} - V_{TURNON} Margin

Note 2: Production tested at T_A = +25°C. Overtemperature limits are guaranteed by design.

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

UNITS

v

٧

v

v

٧

V

MAX

10.3

10.5

10.5

10.5

10.7

10.7

V_{CC} Shunt Regulator Voltage at 1mA I_{CC} = 1mA, V_{ITH/RUN} = 0V VCLAMP1mA LTC3803E 8.3 9.4 LTC3803H, LTC3803I 8.3 9.4 9.4 LTC3803MP 8

LTC3803E

LTC3803MP

LTC3803E

the second times with the

10

 $I_{CC} = 25 \text{mA}, V_{ITH/RUN} = 0 \text{V}$

LTC3803H, LTC3803I, LTC3803MP

UNITS

UA.

V

V

LTC3803H, LTC3803I

CONDITIONS

junction temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_{CC} = 8V$, unless otherwise noted. (Note 2)

MASS PRODUCTION - Quality

Temp Grade	COLD	ROOM	НОТ	~PPM
c	0 degC	+25 degC	+70 degC	< 50
· ·	Sample	Sample	Sample	
E	0 degC	+25 degC	+85 degC	< 25
-	Sample	Sample	Sample	~23
	-40 degC	+25 degC	+85 to +125 degC	<i>c</i> 2
	Larger Sample	Sample	Larger Sample	74
ш	-40 degC	+25 degC	+125 to +150 degC	<i>c</i> 1
	Larger Sample	Sample	100% Tested	<u> </u>
Δ1	-40 degC	+25 degC	+85 or +125 degC	<0.2
AT	Larger Sample	Sample	100% Tested	< U.5
277	-40 degC	+25 degC	+85 or +125 degC	< 0.1
322	100% Tested	Sample	100% Tested	< U.1

QA Testing Before Shipping

If 1 part in the sample fails, then the whole lot is 100% tested

Please see Data Sheet for actual test and temperature guarantees

Design Tools: Step-by-Step Power Supply Design

AHEAD OF WHAT'S POSSIBLE

ADI Power Business Unit

The Value We Deliver

Innovative, High Performance Solutions with Outstanding Price/Performance

Expert Worldwide Technical Support

Best Quality and Reliability

ADI Leading High-Performance Power Technology Innovation

